IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v186y2021icp71-79.html
   My bibliography  Save this article

Linear-Phase-Type probability modelling of functional PCA with applications to resistive memories

Author

Listed:
  • Ruiz-Castro, Juan E.
  • Acal, Christian
  • Aguilera, Ana M.
  • Aguilera-Morillo, M. Carmen
  • Roldán, Juan B.

Abstract

Functional principal component analysis (FPCA) based on Karhunen–Loève (K–L) expansion allows to describe the stochastic evolution of the main characteristics associated to multiple systems and devices. Identifying the probability distribution of the principal component scores is fundamental to characterize the whole process. The aim of this work is to consider a family of statistical distributions that could be accurately adjusted to a previous transformation. Then, a new class of distributions, the linear-phase-type, is introduced to model the principal components. This class is studied in detail in order to prove, through the K–L expansion, that certain linear transformations of the process at each time point are phase-type distributed. This way, the one-dimensional distributions of the process are in the same linear-phase-type class. Finally, an application to model the reset process associated with resistive memories is developed and explained.

Suggested Citation

  • Ruiz-Castro, Juan E. & Acal, Christian & Aguilera, Ana M. & Aguilera-Morillo, M. Carmen & Roldán, Juan B., 2021. "Linear-Phase-Type probability modelling of functional PCA with applications to resistive memories," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 186(C), pages 71-79.
  • Handle: RePEc:eee:matcom:v:186:y:2021:i:c:p:71-79
    DOI: 10.1016/j.matcom.2020.07.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475420302354
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.07.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aguilera-Morillo, M. Carmen & Aguilera, Ana M. & Jiménez-Molinos, Francisco & Roldán, Juan B., 2019. "Stochastic modeling of Random Access Memories reset transitions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 197-209.
    2. Ruiz-Castro, Juan Eloy, 2020. "A complex multi-state k-out-of-n: G system with preventive maintenance and loss of units," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    3. Juan Eloy Ruiz-Castro, 2018. "A D-MMAP to Model a Complex Multi-state System with Loss of Units," Springer Series in Reliability Engineering, in: Anatoly Lisnianski & Ilia Frenkel & Alex Karagrigoriou (ed.), Recent Advances in Multi-state Systems Reliability, pages 39-58, Springer.
    4. Ruiz-Castro, Juan Eloy & Dawabsha, Mohammed & Alonso, Francisco Javier, 2018. "Discrete-time Markovian arrival processes to model multi-state complex systems with loss of units and an indeterminate variable number of repairpersons," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 114-127.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Acal & Manuel Escabias & Ana M. Aguilera & Mariano J. Valderrama, 2021. "COVID-19 Data Imputation by Multiple Function-on-Function Principal Component Regression," Mathematics, MDPI, vol. 9(11), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Eloy Ruiz-Castro, 2021. "Optimizing a Multi-State Cold-Standby System with Multiple Vacations in the Repair and Loss of Units," Mathematics, MDPI, vol. 9(8), pages 1-29, April.
    2. Juybari, Mohammad N. & Hamadani, Ali Zeinal & Ardakan, Mostafa Abouei, 2023. "Availability analysis and cost optimization of a repairable system with a mix of active and warm-standby components in a shock environment," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    3. Juan E. Ruiz-Castro & Christian Acal & Ana M. Aguilera & Juan B. Roldán, 2021. "A Complex Model via Phase-Type Distributions to Study Random Telegraph Noise in Resistive Memories," Mathematics, MDPI, vol. 9(4), pages 1-16, February.
    4. Ruiz-Castro, Juan Eloy, 2020. "A complex multi-state k-out-of-n: G system with preventive maintenance and loss of units," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    5. Sakurahara, Tatsuya & O'Shea, Nicholas & Cheng, Wen-Chi & Zhang, Sai & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "Integrating renewal process modeling with Probabilistic Physics-of-Failure: Application to Loss of Coolant Accident (LOCA) frequency estimations in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    6. Safaei, Fatemeh & Ahmadi, Jafar & Taghipour, Sharareh, 2022. "A maintenance policy for a k-out-of-n system under enhancing the system’s operating time and safety constraints, and selling the second-hand components," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    7. Jin, Yuxue & Geng, Jie & Lv, Chuan & Chi, Ying & Zhao, Tingdi, 2023. "A methodology for equipment condition simulation and maintenance threshold optimization oriented to the influence of multiple events," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    8. Aguilera, Ana M. & Acal, Christian & Aguilera-Morillo, M. Carmen & Jiménez-Molinos, Francisco & Roldán, Juan B., 2021. "Homogeneity problem for basis expansion of functional data with applications to resistive memories," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 186(C), pages 41-51.
    9. Alkaff, Abdullah, 2021. "Discrete time dynamic reliability modeling for systems with multistate components," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    10. Zhang, Ning & Qi, Faqun & Zhang, Chengjie & Zhou, Hongming, 2022. "Joint optimization of condition-based maintenance policy and buffer capacity for a two-unit series system," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    11. Delia Montoro-Cazorla & Rafael Pérez-Ocón, 2022. "Optimizing Costs in a Reliability System under Markovian Arrival of Failures and Reposition by K -Policy Inspection," Mathematics, MDPI, vol. 10(11), pages 1-21, June.
    12. Christian Acal & Ana M. Aguilera & Manuel Escabias, 2020. "New Modeling Approaches Based on Varimax Rotation of Functional Principal Components," Mathematics, MDPI, vol. 8(11), pages 1-15, November.
    13. Delia Montoro-Cazorla & Rafael Pérez-Ocón, 2022. "Analysis of k-Out-of-N-Systems with Different Units under Simultaneous Failures: A Matrix-Analytic Approach," Mathematics, MDPI, vol. 10(11), pages 1-13, June.
    14. Cheng, Dawei & Lu, Zhong & Zhou, Jia & Liang, Xihui, 2023. "An optimizing maintenance policy for airborne redundant systems operating with faults by using Markov process and NSGA-II," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    15. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2021. "Optimal mission abort policies for repairable multistate systems performing multi-attempt mission," Reliability Engineering and System Safety, Elsevier, vol. 209(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:186:y:2021:i:c:p:71-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.