IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v99y2020ics0264837720305378.html
   My bibliography  Save this article

Changes of forestland in China's coastal areas (1996-2015): Regional variations and driving forces

Author

Listed:
  • Zhang, Xiaoxiang
  • Yao, Jing
  • Wang, Jing
  • Sila-Nowicka, Katarzyna

Abstract

Coastal forests play a critical role in the defence of natural disasters like typhoons and tsunamis. The deforestation and forest degradation due to rapid urbanization has presented great challenges (e.g. debris flows and floods) to China’s coastal areas. Using a unique national land-use survey dataset and geographical information system (GIS)-based spatial analytics, including local Moran’s I and geographically weighted regression (GWR), this paper investigates the regional variations and associated driving forces of forestland changes in China’s coastal areas across three periods: 1996−2000, 2000–2008 and 2009–2015. The results suggest that the forestland has generally increased until 2008 and has decreased since 2009. Particularly, some counties in the south coast have higher degree of forestland loss during 1996–2008 and the growth of forestland after 2009 was only found in a few counties in the north and east coast. Also, the results indicate that the initial proportion of forestland in each period and the changes of arable-land have significant positive associations with the forestland changes across all the three periods, where the former mainly affects the northern coast while the latter has a primary influence in the southern coast. The findings suggest that government policies for increasing forestland such as the “Grain for Green” project were highly effective in China’s coastal areas before 2008 but have shown less impact ever since. This research provides insights into the dynamics of forestland in China’s coastal areas and can assist with future decision-making regarding forest resources protection and management.

Suggested Citation

  • Zhang, Xiaoxiang & Yao, Jing & Wang, Jing & Sila-Nowicka, Katarzyna, 2020. "Changes of forestland in China's coastal areas (1996-2015): Regional variations and driving forces," Land Use Policy, Elsevier, vol. 99(C).
  • Handle: RePEc:eee:lauspo:v:99:y:2020:i:c:s0264837720305378
    DOI: 10.1016/j.landusepol.2020.105018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837720305378
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2020.105018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gollini, Isabella & Lu, Binbin & Charlton, Martin & Brunsdon, Christopher & Harris, Paul, 2015. "GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i17).
    2. A. Fotheringham & Ricardo Crespo & Jing Yao, 2015. "Exploring, modelling and predicting spatiotemporal variations in house prices," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 54(2), pages 417-436, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yigong Hu & Binbin Lu & Yong Ge & Guanpeng Dong, 2022. "Uncovering spatial heterogeneity in real estate prices via combined hierarchical linear model and geographically weighted regression," Environment and Planning B, , vol. 49(6), pages 1715-1740, July.
    2. Gainbi Park & Zengwang Xu, 2022. "The constituent components and local indicator variables of social vulnerability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 95-120, January.
    3. Zaijun Li & Jianquan Cheng & Qiyan Wu, 2016. "Analyzing regional economic development patterns in a fast developing province of China through geographically weighted principal component analysis," Letters in Spatial and Resource Sciences, Springer, vol. 9(3), pages 233-245, October.
    4. Andréia S. Santos & Lucas Teles Faria & Mara Lúcia M. Lopes & Carlos R. Minussi, 2023. "Power Distribution Systems’ Vulnerability by Regions Caused by Electrical Discharges," Energies, MDPI, vol. 16(23), pages 1-19, November.
    5. Kirtonia, Sajeeb & Sun, Yanshuo, 2022. "Evaluating rail transit's comparative advantages in travel cost and time over taxi with open data in two U.S. cities," Transport Policy, Elsevier, vol. 115(C), pages 75-87.
    6. Alexis Comber & Paul Harris, 2018. "Geographically weighted elastic net logistic regression," Journal of Geographical Systems, Springer, vol. 20(4), pages 317-341, October.
    7. Hao Wu & Hongzan Jiao & Yang Yu & Zhigang Li & Zhenghong Peng & Lingbo Liu & Zheng Zeng, 2018. "Influence Factors and Regression Model of Urban Housing Prices Based on Internet Open Access Data," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    8. Zolnik, Edmund, 2021. "Geographically weighted regression models of residential property transactions: Walkability and value uplift," Journal of Transport Geography, Elsevier, vol. 92(C).
    9. Alice Barreca, 2022. "Architectural Quality and the Housing Market: Values of the Late Twentieth Century Built Heritage," Sustainability, MDPI, vol. 14(5), pages 1-24, February.
    10. Gianfranco Piras & Mauricio Sarrias, 2023. "Heterogeneous spatial models in R: spatial regimes models," Journal of Spatial Econometrics, Springer, vol. 4(1), pages 1-32, December.
    11. Yanming Ren & Zongyao Huang & Lingling Zhou & Peng Xiao & Junwei Song & Ping He & Chuanxing Xie & Ran Zhou & Menghan Li & Xiangqun Dong & Qing Mao & Chao You & Jianguo Xu & Yanhui Liu & Zhigang Lan & , 2023. "Spatial transcriptomics reveals niche-specific enrichment and vulnerabilities of radial glial stem-like cells in malignant gliomas," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    12. Fabio Humberto Sepúlveda Murillo & Jorge Chica Olmo & Norely Margarita Soto Builes, 2019. "Spatial Variability Analysis of Quality of Life and Its Determinants: A Case Study of Medellín, Colombia," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(3), pages 1233-1256, August.
    13. Olaru, Doina & Mulley, Corinne & Smith, Brett & Ma, Liang, 2017. "Policy-led selection of the most appropriate empirical model to estimate hedonic prices in the residential market," Journal of Transport Geography, Elsevier, vol. 62(C), pages 213-228.
    14. Minghai Luo & Sixian Qin & Haoxue Chang & Anqi Zhang, 2019. "Disaggregation Method of Carbon Emission: A Case Study in Wuhan, China," Sustainability, MDPI, vol. 11(7), pages 1-17, April.
    15. Ömer Ünsal & Aynaz Lotfata & Sedat Avcı, 2023. "Exploring the Relationships between Land Surface Temperature and Its Influencing Determinants Using Local Spatial Modeling," Sustainability, MDPI, vol. 15(15), pages 1-26, July.
    16. Marta Sylla & Tadeusz Lasota & Szymon Szewrański, 2019. "Valuing Environmental Amenities in Peri-Urban Areas: Evidence from Poland," Sustainability, MDPI, vol. 11(3), pages 1-15, January.
    17. Paul Harris & Bruno Lanfranco & Binbin Lu & Alexis Comber, 2020. "Influence of Geographical Effects in Hedonic Pricing Models for Grass-Fed Cattle in Uruguay," Agriculture, MDPI, vol. 10(7), pages 1-17, July.
    18. Nana Yang & Jiansong Li & Binbin Lu & Minghai Luo & Linze Li, 2019. "Exploring the Spatial Pattern and Influencing Factors of Land Carrying Capacity in Wuhan," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    19. Feuillet, T. & Commenges, H. & Menai, M. & Salze, P. & Perchoux, C. & Reuillon, R. & Kesse-Guyot, E. & Enaux, C. & Nazare, J.-A. & Hercberg, S. & Simon, C. & Charreire, H. & Oppert, J.M., 2018. "A massive geographically weighted regression model of walking-environment relationships," Journal of Transport Geography, Elsevier, vol. 68(C), pages 118-129.
    20. Fen-Jiao Wang & Chang-Lin Mei & Zhi Zhang & Qiu-Xia Xu, 2022. "Testing for Local Spatial Association Based on Geographically Weighted Interpolation of Geostatistical Data with Application to PM2.5 Concentration Analysis," Sustainability, MDPI, vol. 14(21), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:99:y:2020:i:c:s0264837720305378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.