IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v111y2021ics0264837721004646.html
   My bibliography  Save this article

Assessing synergies and trade-offs between ecosystem services in forest landscape management

Author

Listed:
  • Jafarzadeh, Ali Akbar
  • Mahdavi, Ali
  • Shamsi, Seyed Rashid Fallah
  • Yousefpour, Rasoul

Abstract

Human induced land use changes affect the provisioning of ecosystem services and may follow some economic rationale. Allocation of limited natural resources to different land utilization forms is the ultimate management problem for sustainable development. This study attempts to analyses the current land-use allocation systems in the Zagros area of western Iran suffering from soil erosion and water yielding problems and providing crucial economic benefits for local communities. Therefore, a comprehensive study using multiple advanced methods is needed to examine the ways land-use allocation can be enhanced with respect to multiple ecosystem services. For this, we have considered four ecosystem services, namely water yield, prevention of soil erosion, carbon sequestration and marketable products (wood, food). The economic efficiency (marketable production) of four different and competing land-uses, i.e. forest, pasture, orchard, and agriculture, were calculated applying a direct market valuation. To estimate the provision of ecosystem services, natural capital project tools InVEST and MPSIAC were used to model water production and total carbon budget (aerial biomass, underground, litter and soil), respectively. A Land-Use Conflict Identification Strategy model was used to classify Synergies and Trade-offs between the ecosystem services. A map was then developed to illustrate the spatial distribution of services, their provision levels, and to better understand trade-offs and synergies among a bundle of ecosystem services. To select sample points, a systematic random network was implemented on the map of the region and 533 sample points were selected. We used these sample points to assess the provision of ecosystem services and their synergies and trade-offs. To account for decision-makers’ preferences about the ecosystem services, a non-linear programming method was used to optimize multi-objective land-use allocation by weighing multi-objective benefits from ecosystem services at the landscape level. The results showed that 75% of the studied sample points had synergies, at least between two services, and 25% of the sample points showed trade-offs between the ES. The highest synergies were achieved between water production and prevention of soil erosion. The highest maximum target function was found for a diversity of scenarios aiming for 0–100% provision of the four services. In superior options, forest area level has increased by 75% and the level of orchards has increased by 258% (Relative to the initial area before optimization). The pasture area decreased by 45% and the agricultural land-use area was 65% lower than the pre-optimal level. The erosion rate of the region was reduced about 3736 tons/ha/year relative to pre-optimized conditions (100,514 tones/ha/year) and the water yield capacity increased by 663,100 cubic meters in the whole area, which is of great value due to the importance of water availability in the region. In addition, 76,905 tons /whole area have been added to the carbon storage function. Finally, 172,597 million Rials revenue generation (80%) could be realized for the entire region of 13484 ha.

Suggested Citation

  • Jafarzadeh, Ali Akbar & Mahdavi, Ali & Shamsi, Seyed Rashid Fallah & Yousefpour, Rasoul, 2021. "Assessing synergies and trade-offs between ecosystem services in forest landscape management," Land Use Policy, Elsevier, vol. 111(C).
  • Handle: RePEc:eee:lauspo:v:111:y:2021:i:c:s0264837721004646
    DOI: 10.1016/j.landusepol.2021.105741
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837721004646
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2021.105741?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Campbell, Elliott T. & Tilley, David R., 2014. "Valuing ecosystem services from Maryland forests using environmental accounting," Ecosystem Services, Elsevier, vol. 7(C), pages 141-151.
    2. de Groot, Rudolf S. & Wilson, Matthew A. & Boumans, Roelof M. J., 2002. "A typology for the classification, description and valuation of ecosystem functions, goods and services," Ecological Economics, Elsevier, vol. 41(3), pages 393-408, June.
    3. Maes, Joachim & Egoh, Benis & Willemen, Louise & Liquete, Camino & Vihervaara, Petteri & Schägner, Jan Philipp & Grizzetti, Bruna & Drakou, Evangelia G. & Notte, Alessandra La & Zulian, Grazia & Bour, 2012. "Mapping ecosystem services for policy support and decision making in the European Union," Ecosystem Services, Elsevier, vol. 1(1), pages 31-39.
    4. Biao, Zhang & Wenhua, Li & Gaodi, Xie & Yu, Xiao, 2010. "Water conservation of forest ecosystem in Beijing and its value," Ecological Economics, Elsevier, vol. 69(7), pages 1416-1426, May.
    5. Müller, Felix & Burkhard, Benjamin, 2012. "The indicator side of ecosystem services," Ecosystem Services, Elsevier, vol. 1(1), pages 26-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lautrup, M. & Panduro, T.E. & Olsen, J.V. & Pedersen, M.F. & Jacobsen, J.B., 2023. "Is there more to trees than timber? Estimating the private amenity value of forests using a hedonic land model for combined agricultural properties," Forest Policy and Economics, Elsevier, vol. 146(C).
    2. Yongjun Du & Xiaolong Li & Xinlin He & Xiaoqian Li & Guang Yang & Dongbo Li & Wenhe Xu & Xiang Qiao & Chen Li & Lu Sui, 2022. "Multi-Scenario Simulation and Trade-Off Analysis of Ecological Service Value in the Manas River Basin Based on Land Use Optimization in China," IJERPH, MDPI, vol. 19(10), pages 1-31, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valencia Torres, Angélica & Tiwari, Chetan & Atkinson, Samuel F., 2021. "Progress in ecosystem services research: A guide for scholars and practitioners," Ecosystem Services, Elsevier, vol. 49(C).
    2. Häyhä, Tiina & Franzese, Pier Paolo, 2014. "Ecosystem services assessment: A review under an ecological-economic and systems perspective," Ecological Modelling, Elsevier, vol. 289(C), pages 124-132.
    3. Alessio D’Auria & Pasquale De Toro & Nicola Fierro & Elisa Montone, 2018. "Integration between GIS and Multi-Criteria Analysis for Ecosystem Services Assessment: A Methodological Proposal for the National Park of Cilento, Vallo di Diano and Alburni (Italy)," Sustainability, MDPI, vol. 10(9), pages 1-25, September.
    4. Gerner, Nadine V. & Nafo, Issa & Winking, Caroline & Wencki, Kristina & Strehl, Clemens & Wortberg, Timo & Niemann, André & Anzaldua, Gerardo & Lago, Manuel & Birk, Sebastian, 2018. "Large-scale river restoration pays off: A case study of ecosystem service valuation for the Emscher restoration generation project," Ecosystem Services, Elsevier, vol. 30(PB), pages 327-338.
    5. Braat, Leon C. & de Groot, Rudolf, 2012. "The ecosystem services agenda:bridging the worlds of natural science and economics, conservation and development, and public and private policy," Ecosystem Services, Elsevier, vol. 1(1), pages 4-15.
    6. Paolo Vassallo & Claudia Turcato & Ilaria Rigo & Claudia Scopesi & Andrea Costa & Matteo Barcella & Giulia Dapueto & Mauro Mariotti & Chiara Paoli, 2021. "Biophysical Accounting of Forests’ Value under Different Management Regimes: Conservation vs. Exploitation," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    7. Häyhä, Tiina & Franzese, Pier Paolo & Paletto, Alessandro & Fath, Brian D., 2015. "Assessing, valuing, and mapping ecosystem services in Alpine forests," Ecosystem Services, Elsevier, vol. 14(C), pages 12-23.
    8. Lopes, Rita & Videira, Nuno, 2017. "Modelling feedback processes underpinning management of ecosystem services: The role of participatory systems mapping," Ecosystem Services, Elsevier, vol. 28(PA), pages 28-42.
    9. Pinke, Zsolt & Kiss, Márton & Lövei, Gábor L., 2018. "Developing an integrated land use planning system on reclaimed wetlands of the Hungarian Plain using economic valuation of ecosystem services," Ecosystem Services, Elsevier, vol. 30(PB), pages 299-308.
    10. Khatun, Rahima & Reza, Mohammad Imam Hasan & Moniruzzaman, M. & Yaakob, Zahira, 2017. "Sustainable oil palm industry: The possibilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 608-619.
    11. Kubiszewski, Ida & Concollato, Luke & Costanza, Robert & Stern, David I., 2023. "Changes in authorship, networks, and research topics in ecosystem services," Ecosystem Services, Elsevier, vol. 59(C).
    12. Vilém Pechanec & Helena Kilianová & Elwis Tangwa & Alena Vondráková & Ivo Machar, 2019. "What is the Development Capacity for Provision of Ecosystem Services in the Czech Republic?," Sustainability, MDPI, vol. 11(16), pages 1-17, August.
    13. Danley, Brian & Widmark, Camilla, 2016. "Evaluating conceptual definitions of ecosystem services and their implications," Ecological Economics, Elsevier, vol. 126(C), pages 132-138.
    14. Mengist, Wondimagegn & Soromessa, Teshome & Feyisa, Gudina Legese & Jenerette, G. Darrel, 2022. "Socio-environmental determinants of the perceived value of moist Afromontane forest ecosystem services in Kaffa Biosphere Reserve, Ethiopia," Forest Policy and Economics, Elsevier, vol. 136(C).
    15. Vassallo, P. & Paoli, C. & Buonocore, E. & Franzese, P.P. & Russo, G.F. & Povero, P., 2017. "Assessing the value of natural capital in marine protected areas: A biophysical and trophodynamic environmental accounting model," Ecological Modelling, Elsevier, vol. 355(C), pages 12-17.
    16. Schröter, Matthias & Remme, Roy P. & Sumarga, Elham & Barton, David N. & Hein, Lars, 2015. "Lessons learned for spatial modelling of ecosystem services in support of ecosystem accounting," Ecosystem Services, Elsevier, vol. 13(C), pages 64-69.
    17. Clément Feger & Laurent Mermet, 2017. "A blueprint towards accounting for the management of ecosystems," Post-Print hal-01930913, HAL.
    18. Komeil JAHANIFAR & Hamid AMIRNEJAD & Zahra ABEDI & Alireza VAFAEINEJAD, 2017. "Estimation of the value of forest ecosystem services to develop conservational strategy management (strengths, weaknesses, opportunities and threats)," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 63(7), pages 300-312.
    19. Élia Pires-Marques & Cristina Chaves & Lígia M. Costa Pinto, 2021. "Biophysical and monetary quantification of ecosystem services in a mountain region: the case of avoided soil erosion," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11382-11405, August.
    20. Campbell, Elliott & Marks, Rachel & Conn, Christine, 2020. "Spatial modeling of the biophysical and economic values of ecosystem services in Maryland, USA," Ecosystem Services, Elsevier, vol. 43(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:111:y:2021:i:c:s0264837721004646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.