IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v82y2020ics0966692318304575.html
   My bibliography  Save this article

A GIS-based method for evaluating the walkability of a pedestrian environment and prioritised investments

Author

Listed:
  • D'Orso, Gabriele
  • Migliore, Marco

Abstract

Despite the large investments made in the construction and modernisation of railway infrastructure, poor quality pedestrian routes may discourage users from using public transport. In fact, very little attention is generally paid to pedestrian mobility. Therefore, a method for evaluating the quality of pedestrian paths and the accessibility to railway stations has been developed. This method considers the main factors influencing the walkability of an urban area and makes it possible to establish the priorities for intervention, i.e. to identify the arcs of a pedestrian network that require prioritised action. The methodology is a decision support tool that can be used by policymakers and is developed in a GIS environment. Three railway stations in Palermo and its surrounding areas were chosen as a case study.

Suggested Citation

  • D'Orso, Gabriele & Migliore, Marco, 2020. "A GIS-based method for evaluating the walkability of a pedestrian environment and prioritised investments," Journal of Transport Geography, Elsevier, vol. 82(C).
  • Handle: RePEc:eee:jotrge:v:82:y:2020:i:c:s0966692318304575
    DOI: 10.1016/j.jtrangeo.2019.102555
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692318304575
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2019.102555?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Moniruzzaman, Md & Páez, Antonio, 2016. "An investigation of the attributes of walkable environments from the perspective of seniors in Montreal," Journal of Transport Geography, Elsevier, vol. 51(C), pages 85-96.
    2. Papa, Enrica & Bertolini, Luca, 2015. "Accessibility and Transit-Oriented Development in European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 47(C), pages 70-83.
    3. Christiansen, Lars B. & Toftager, Mette & Schipperijn, Jasper & Ersbøll, Annette K. & Giles-Corti, Billie & Troelsen, Jens, 2014. "School site walkability and active school transport – association, mediation and moderation," Journal of Transport Geography, Elsevier, vol. 34(C), pages 7-15.
    4. Francesco Pinna & Francesca Masala & Chiara Garau, 2017. "Urban Policies and Mobility Trends in Italian Smart Cities," Sustainability, MDPI, vol. 9(4), pages 1-21, March.
    5. Kelly, C.E. & Tight, M.R. & Hodgson, F.C. & Page, M.W., 2011. "A comparison of three methods for assessing the walkability of the pedestrian environment," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1500-1508.
    6. Battista, Geoffrey A. & Manaugh, Kevin, 2018. "Stores and mores: Toward socializing walkability," Journal of Transport Geography, Elsevier, vol. 67(C), pages 53-60.
    7. Keshkamat, S.S. & Looijen, J.M. & Zuidgeest, M.H.P., 2009. "The formulation and evaluation of transport route planning alternatives: a spatial decision support system for the Via Baltica project, Poland," Journal of Transport Geography, Elsevier, vol. 17(1), pages 54-64.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Novak, David C. & Sullivan, James L. & Niles, Meredith T., 2021. "Targeted Investment for Food Access," Institute of Transportation Studies, Working Paper Series qt9b71p9zg, Institute of Transportation Studies, UC Davis.
    2. Djihed Berkouk & Tallal Abdel Karim Bouzir & Luigi Maffei & Massimiliano Masullo, 2020. "Examining the Associations between Oases Soundscape Components and Walking Speed: Correlation or Causation?," Sustainability, MDPI, vol. 12(11), pages 1-16, June.
    3. Rahman, Ashikur, 2022. "A GIS-based, microscale walkability assessment integrating the local topography," Journal of Transport Geography, Elsevier, vol. 103(C).
    4. Ying Liang & Wei Song & Xiaofeng Dong, 2021. "Evaluating the Space Use of Large Railway Hub Station Areas in Beijing toward Integrated Station-City Development," Land, MDPI, vol. 10(11), pages 1-22, November.
    5. Loor, Ignacio & Evans, James, 2021. "Understanding the value and vulnerability of informal infrastructures: Footpaths in Quito," Journal of Transport Geography, Elsevier, vol. 94(C).
    6. Bartzokas-Tsiompras, Alexandros & Bakogiannis, Efthimios & Nikitas, Alexandros, 2023. "Global microscale walkability ratings and rankings: A novel composite indicator for 59 European city centres," Journal of Transport Geography, Elsevier, vol. 111(C).
    7. Liu, Qiyang & Liu, Yang & Zhang, Chi & An, Zihao & Zhao, Pengjun, 2021. "Elderly mobility during the COVID-19 pandemic: A qualitative exploration in Kunming, China," Journal of Transport Geography, Elsevier, vol. 96(C).
    8. Otsuka, Noriko & Wittowsky, Dirk & Damerau, Marlene & Gerten, Christian, 2021. "Walkability assessment for urban areas around railway stations along the Rhine-Alpine Corridor," Journal of Transport Geography, Elsevier, vol. 93(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yanan & Yang, Dujuan & Timmermans, Harry J.P. & de Vries, Bauke, 2020. "Analysis of the impact of street-scale built environment design near metro stations on pedestrian and cyclist road segment choice: A stated choice experiment," Journal of Transport Geography, Elsevier, vol. 82(C).
    2. Mona Jabbari & Fernando Fonseca & Rui Ramos, 2018. "Combining multi-criteria and space syntax analysis to assess a pedestrian network: the case of Oporto," Journal of Urban Design, Taylor & Francis Journals, vol. 23(1), pages 23-41, January.
    3. Ji Seong Chae & Chang Hyun Choi & Jeong Hoon Oh & Young Tae Chae & Jae-Weon Jeong & Dongkyu Lee, 2021. "Urban Public Service Analysis by GIS-MCDA for Sustainable Redevelopment: A Case Study of a Megacity in Korea," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    4. Ahmad Adeel & Bruno Notteboom & Ansar Yasar & Kris Scheerlinck & Jeroen Stevens, 2021. "Sustainable Streetscape and Built Environment Designs around BRT Stations: A Stated Choice Experiment Using 3D Visualizations," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    5. Ibraeva, Anna & Correia, Gonçalo Homem de Almeida & Silva, Cecília & Antunes, António Pais, 2020. "Transit-oriented development: A review of research achievements and challenges," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 110-130.
    6. Vanky, Anthony & Courtney, Theodore & Verma, Santosh & Ratti, Carlo, 2016. "One to Many: Opportunities to Understanding Collective Behaviors in Urban Environments Through Individual's Passively-Collected Locative Data," SocArXiv f7mpd, Center for Open Science.
    7. Piotr Rosik & Julia Wójcik, 2022. "Transport Infrastructure and Regional Development: A Survey of Literature on Wider Economic and Spatial Impacts," Sustainability, MDPI, vol. 15(1), pages 1-19, December.
    8. Turbay, André L. B. & Pereira, Rafael H. M. & Firmino, Rodrigo, 2022. "The equity implications of TOD in Curitiba," SocArXiv cj87q, Center for Open Science.
    9. Yang, Yongjiang & Sasaki, Kuniaki & Cheng, Long & Tao, Sui, 2022. "Does the built environment matter for active travel among older adults: Insights from Chiba City, Japan," Journal of Transport Geography, Elsevier, vol. 101(C).
    10. Elise Desjardins & Christopher D. Higgins & Darren M. Scott & Emma Apatu & Antonio Páez, 2022. "Correlates of bicycling trip flows in Hamilton, Ontario: fastest, quietest, or balanced routes?," Transportation, Springer, vol. 49(3), pages 867-895, June.
    11. Jia Zhao & Wei Su & Jiancheng Luo & Jin Zuo, 2021. "Evaluation and Optimization of Walkability of Children’s School Travel Road for Accessibility and Safety Improvement," IJERPH, MDPI, vol. 19(1), pages 1-19, December.
    12. Maciej Dobrzyñski & Krzysztof Dziekoñski & Arkadiusz Jurczuk, 2015. "Stakeholders Mapping - A Case Of International Logistics Project," Polish Journal of Management Studies, Czestochowa Technical University, Department of Management, vol. 11(2), pages 17-26, June.
    13. Vale, David S. & Viana, Cláudia M. & Pereira, Mauro, 2018. "The extended node-place model at the local scale: Evaluating the integration of land use and transport for Lisbon's subway network," Journal of Transport Geography, Elsevier, vol. 69(C), pages 282-293.
    14. Mariano Gallo & Mario Marinelli, 2020. "Sustainable Mobility: A Review of Possible Actions and Policies," Sustainability, MDPI, vol. 12(18), pages 1-39, September.
    15. Marco Trolese & Francesco De Fabiis & Pierluigi Coppola, 2023. "A Walkability Index including Pedestrians’ Perception of Built Environment: The Case Study of Milano Rogoredo Station," Sustainability, MDPI, vol. 15(21), pages 1-14, October.
    16. Moradi, Afsaneh & Vagnoni, Emidia, 2018. "A multi-level perspective analysis of urban mobility system dynamics: What are the future transition pathways?," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 231-243.
    17. Cheng, Long & Shi, Kunbo & De Vos, Jonas & Cao, Mengqiu & Witlox, Frank, 2021. "Examining the spatially heterogeneous effects of the built environment on walking among older adults," Transport Policy, Elsevier, vol. 100(C), pages 21-30.
    18. Massingue, Suzanna Allen & Oviedo, Daniel, 2021. "Walkability and the Right to the city: A snapshot critique of pedestrian space in Maputo, Mozambique," Research in Transportation Economics, Elsevier, vol. 86(C).
    19. Joon-Seok Kim & Nina Shin, 2021. "Planning for Railway Station Network Sustainability Based on Node–Place Analysis of Local Stations," Sustainability, MDPI, vol. 13(9), pages 1-12, April.
    20. Giulio Grossi & Marco Mariani & Alessandra Mattei & Patrizia Lattarulo & Ozge Oner, 2020. "Direct and spillover effects of a new tramway line on the commercial vitality of peripheral streets. A synthetic-control approach," Papers 2004.05027, arXiv.org, revised Nov 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:82:y:2020:i:c:s0966692318304575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.