IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v119y2023ics0305048323000580.html
   My bibliography  Save this article

The discrete p-center location problem with upgrading

Author

Listed:
  • Anton-Sanchez, Laura
  • Landete, Mercedes
  • Saldanha-da-Gama, Francisco

Abstract

In this paper, different upgrading strategies are investigated in the context of the p-center problem. The possibility of upgrading a set of connections to different centers is considered as well as the possibility of upgrading entire centers, i.e., all connections made to them. Two variants for these perspectives are analyzed: in the first, there is a limit on the number of connections or centers that can be upgraded; in the second, an existing budget is assumed for the same purpose. Different mixed-integer linear programming models are introduced for those problems as well as data-driven lower and upper bounds. In most cases, an optimal solution can be obtained within an acceptable computing time using an off-the-shelf solver. Nevertheless, this is not the case for one particular family of problems. This motivated the development of a math-heuristic seeking high-quality feasible solutions in that specific case. Extensive computational experiments are reported highlighting the relevance of upgrading connections or centers in the context of the p-center problem.

Suggested Citation

  • Anton-Sanchez, Laura & Landete, Mercedes & Saldanha-da-Gama, Francisco, 2023. "The discrete p-center location problem with upgrading," Omega, Elsevier, vol. 119(C).
  • Handle: RePEc:eee:jomega:v:119:y:2023:i:c:s0305048323000580
    DOI: 10.1016/j.omega.2023.102894
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048323000580
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2023.102894?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akiyoshi Shioura & Natalia V. Shakhlevich & Vitaly A. Strusevich, 2020. "Scheduling problems with controllable processing times and a common deadline to minimize maximum compression cost," Journal of Global Optimization, Springer, vol. 76(3), pages 471-490, March.
    2. Stienen, V.F. & Wagenaar, J.C. & den Hertog, D. & Fleuren, H.A., 2021. "Optimal depot locations for humanitarian logistics service providers using robust optimization," Omega, Elsevier, vol. 104(C).
    3. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    4. L. R. Lamberson & R. R. Hocking, 1970. "Optimum Time Compression in Project Scheduling," Management Science, INFORMS, vol. 16(10), pages 597-606, June.
    5. Bell, John E. & Griffis, Stanley E. & Cunningham III, William A. & Eberlan, Jon A., 2011. "Location optimization of strategic alert sites for homeland defense," Omega, Elsevier, vol. 39(2), pages 151-158, April.
    6. Sourour Elloumi & Martine Labbé & Yves Pochet, 2004. "A New Formulation and Resolution Method for the p-Center Problem," INFORMS Journal on Computing, INFORMS, vol. 16(1), pages 84-94, February.
    7. S. L. Hakimi, 1965. "Optimum Distribution of Switching Centers in a Communication Network and Some Related Graph Theoretic Problems," Operations Research, INFORMS, vol. 13(3), pages 462-475, June.
    8. Katsigiannis, Fotios A. & Zografos, Konstantinos G., 2021. "Optimising airport slot allocation considering flight-scheduling flexibility and total airport capacity constraints," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 50-87.
    9. Contreras, Ivan & Fernández, Elena & Marín, Alfredo, 2010. "The Tree of Hubs Location Problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 390-400, April.
    10. Akgün, İbrahim & Gümüşbuğa, Ferhat & Tansel, Barbaros, 2015. "Risk based facility location by using fault tree analysis in disaster management," Omega, Elsevier, vol. 52(C), pages 168-179.
    11. Kahr, Michael, 2022. "Determining locations and layouts for parcel lockers to support supply chain viability at the last mile," Omega, Elsevier, vol. 113(C).
    12. Corberán, Ángel & Landete, Mercedes & Peiró, Juanjo & Saldanha-da-Gama, Francisco, 2020. "The facility location problem with capacity transfers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    13. Karatas, Mumtaz & Eriskin, Levent, 2023. "Linear and piecewise linear formulations for a hierarchical facility location and sizing problem," Omega, Elsevier, vol. 118(C).
    14. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    15. Fadda, Edoardo & Manerba, Daniele & Cabodi, Gianpiero & Camurati, Paolo Enrico & Tadei, Roberto, 2021. "Comparative analysis of models and performance indicators for optimal service facility location," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    16. Baldomero-Naranjo, Marta & Kalcsics, Jörg & Marín, Alfredo & Rodríguez-Chía, Antonio M., 2022. "Upgrading edges in the maximal covering location problem," European Journal of Operational Research, Elsevier, vol. 303(1), pages 14-36.
    17. Pelegrín, Mercedes & Xu, Liding, 2023. "Continuous covering on networks: Improved mixed integer programming formulations," Omega, Elsevier, vol. 117(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pelegrín, Mercedes & Xu, Liding, 2023. "Continuous covering on networks: Improved mixed integer programming formulations," Omega, Elsevier, vol. 117(C).
    2. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    3. Medal, Hugh R. & Pohl, Edward A. & Rossetti, Manuel D., 2014. "A multi-objective integrated facility location-hardening model: Analyzing the pre- and post-disruption tradeoff," European Journal of Operational Research, Elsevier, vol. 237(1), pages 257-270.
    4. Dayanna Rodrigues da Cunha Nunes & Orivalde Soares da Silva Júnior & Renata Albergaria de Mello Bandeira & Yesus Emmanuel Medeiros Vieira, 2023. "A Robust Stochastic Programming Model for the Well Location Problem: The Case of The Brazilian Northeast Region," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    5. Akgün, İbrahim & Gümüşbuğa, Ferhat & Tansel, Barbaros, 2015. "Risk based facility location by using fault tree analysis in disaster management," Omega, Elsevier, vol. 52(C), pages 168-179.
    6. Hu, Shaolong & Dong, Zhijie Sasha & Lev, Benjamin, 2022. "Supplier selection in disaster operations management: Review and research gap identification," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    7. Chen, Weiwei & Kumcu, Gül Çulhan & Melamed, Benjamin & Baveja, Alok, 2023. "Managing resource allocation for the recruitment stocking problem," Omega, Elsevier, vol. 120(C).
    8. Mancini, Simona & Gansterer, Margaretha & Triki, Chefi, 2023. "Locker box location planning under uncertainty in demand and capacity availability," Omega, Elsevier, vol. 120(C).
    9. Saldanha-da-Gama, Francisco, 2022. "Facility Location in Logistics and Transportation: An enduring relationship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    10. Wang, Weiqiao & Yang, Kai & Yang, Lixing & Gao, Ziyou, 2023. "Distributionally robust chance-constrained programming for multi-period emergency resource allocation and vehicle routing in disaster response operations," Omega, Elsevier, vol. 120(C).
    11. Bell, Michael G.H. & Fonzone, Achille & Polyzoni, Chrisanthi, 2014. "Depot location in degradable transport networks," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 148-161.
    12. Aghajani, Mojtaba & Ali Torabi, S. & Altay, Nezih, 2023. "Resilient relief supply planning using an integrated procurement-warehousing model under supply disruption," Omega, Elsevier, vol. 118(C).
    13. Gaar, Elisabeth & Sinnl, Markus, 2022. "A scaleable projection‐based branch‐and‐cut algorithm for the p‐center problem," European Journal of Operational Research, Elsevier, vol. 303(1), pages 78-98.
    14. E L Hillsman, 1984. "The p-Median Structure as a Unified Linear Model for Location—Allocation Analysis," Environment and Planning A, , vol. 16(3), pages 305-318, March.
    15. He, Yan & Wu, Tao & Zhang, Canrong & Liang, Zhe, 2015. "An improved MIP heuristic for the intermodal hub location problem," Omega, Elsevier, vol. 57(PB), pages 203-211.
    16. Huizhu Wang & Jianqin Zhou, 2023. "Location of Railway Emergency Rescue Spots Based on a Near-Full Covering Problem: From a Perspective of Diverse Scenarios," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    17. Karsu, Özlem & Morton, Alec, 2015. "Inequity averse optimization in operational research," European Journal of Operational Research, Elsevier, vol. 245(2), pages 343-359.
    18. Plastria, F., 2012. "A note towards improved homeland defense," Omega, Elsevier, vol. 40(2), pages 244-248, April.
    19. Daoqin Tong & Alan T. Murray, 2009. "Maximising coverage of spatial demand for service," Papers in Regional Science, Wiley Blackwell, vol. 88(1), pages 85-97, March.
    20. Patricia Domínguez-Marín & Stefan Nickel & Pierre Hansen & Nenad Mladenović, 2005. "Heuristic Procedures for Solving the Discrete Ordered Median Problem," Annals of Operations Research, Springer, vol. 136(1), pages 145-173, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:119:y:2023:i:c:s0305048323000580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.