IDEAS home Printed from
   My bibliography  Save this article

Asymptotic confidence intervals for Poisson regression


  • Kohler, Michael
  • Krzyzak, Adam


Let (X,Y) be a -valued random vector where the conditional distribution of Y given X=x is a Poisson distribution with mean m(x). We estimate m by a local polynomial kernel estimate defined by maximizing a localized log-likelihood function. We use this estimate of m(x) to estimate the conditional distribution of Y given X=x by a corresponding Poisson distribution and to construct confidence intervals of level [alpha] of Y given X=x. Under mild regularity conditions on m(x) and on the distribution of X we show strong convergence of the integrated L1 distance between Poisson distribution and its estimate. We also demonstrate that the corresponding confidence interval has asymptotically (i.e., for sample size tending to infinity) level [alpha], and that the probability that the length of this confidence interval deviates from the optimal length by more than one converges to zero with the number of samples tending to infinity.

Suggested Citation

  • Kohler, Michael & Krzyzak, Adam, 2007. "Asymptotic confidence intervals for Poisson regression," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 1072-1094, May.
  • Handle: RePEc:eee:jmvana:v:98:y:2007:i:5:p:1072-1094

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Györfi, László & Walk, Harro, 1997. "On the strong universal consistency of a recursive regression estimate by Pál Révész," Statistics & Probability Letters, Elsevier, vol. 31(3), pages 177-183, January.
    2. Michael Kohler, 2002. "Universal Consistency of Local Polynomial Kernel Regression Estimates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(4), pages 879-899, December.
    3. Algoet, Paul & Györfi, László, 1999. "Strong Universal Pointwise Consistency of Some Regression Function Estimates," Journal of Multivariate Analysis, Elsevier, vol. 71(1), pages 125-144, October.
    4. Harro Walk, 2001. "Strong Universal Pointwise Consistency of Recursive Regression Estimates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(4), pages 691-707, December.
    5. Hudson, H. Malcolm & Lee, Thomas C. M., 1998. "Maximum likelihood restoration and choice of smoothing parameter in deconvolution of image data subject to Poisson noise," Computational Statistics & Data Analysis, Elsevier, vol. 26(4), pages 393-410, February.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. José Santos & M. Neves, 2008. "A local maximum likelihood estimator for Poisson regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 68(3), pages 257-270, November.
    2. Zhao, Xiaobing & Zhou, Xian, 2009. "Semiparametric modeling of medical cost data containing zeros," Statistics & Probability Letters, Elsevier, vol. 79(9), pages 1207-1214, May.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:5:p:1072-1094. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.