IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v98y2007i3p481-492.html
   My bibliography  Save this article

More on the inadmissibility of step-up

Author

Listed:
  • Cohen, Arthur
  • Sackrowitz, Harold B.

Abstract

Cohen and Sackrowitz [Characterization of Bayes procedures for multiple endpoint problems and inadmissibility of the step-up procedure, Ann. Statist. 33 (2005) 145-158] proved that the step-up multiple testing procedure is inadmissible for a multivariate normal model with unknown mean vector and known intraclass covariance matrix. The hypotheses tested are each mean is zero vs. each mean is positive. The risk function is a 2x1 vector where one component is average size and the other component is one minus average power. In this paper, we extend the inadmissibility result to several different models, to two-sided alternatives, and to other risk functions. The models include one-parameter exponential families, independent t-variables, independent [chi]2-variables, t-tests arising from the analysis of variance, and t-tests arising from testing treatments against a control. The additional risk functions are linear combinations where one component is the false discovery rate (FDR).

Suggested Citation

  • Cohen, Arthur & Sackrowitz, Harold B., 2007. "More on the inadmissibility of step-up," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 481-492, March.
  • Handle: RePEc:eee:jmvana:v:98:y:2007:i:3:p:481-492
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00020-0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ishwaran H. & Rao J.S., 2003. "Detecting Differentially Expressed Genes in Microarrays Using Bayesian Model Selection," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 438-455, January.
    2. Peter Muller & Giovanni Parmigiani & Christian Robert & Judith Rousseau, 2004. "Optimal Sample Size for Multiple Testing: The Case of Gene Expression Microarrays," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 990-1001, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Youngjo Lee & Jan F. Bjørnstad, 2013. "Extended likelihood approach to large-scale multiple testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 553-575, June.
    2. Ebrahimi, Nader, 2008. "Simultaneous control of false positives and false negatives in multiple hypotheses testing," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 437-450, March.
    3. Gordon, Alexander Y., 2014. "Smoothing of stepwise multiple testing procedures," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 149-157.
    4. Michele Guindani & Peter Müller & Song Zhang, 2009. "A Bayesian discovery procedure," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 905-925.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:3:p:481-492. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.