IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Empirical likelihood inference for linear transformation models

  • Lu, Wenbin
  • Liang, Yu
Registered author(s):

    Empirical likelihood inference is developed for censored survival data under the linear transformation models, which generalize Cox's [Regression models and life tables (with Discussion), J. Roy. Statist. Soc. Ser. B 34 (1972) 187-220] proportional hazards model. We show that the limiting distribution of the empirical likelihood ratio is a weighted sum of standard chi-squared distribution. Empirical likelihood ratio tests for the regression parameters with and without covariate adjustments are also derived. Simulation studies suggest that the empirical likelihood ratio tests are more accurate (under the null hypothesis) and powerful (under the alternative hypothesis) than the normal approximation based tests of Chen et al. [Semiparametric of transformation models with censored data, Biometrika 89 (2002) 659-668] when the model is different from the proportional hazards model and the proportion of censoring is high.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/B6WK9-4HHH4TX-1/2/e0cf69d74d431efe0c995cc6a189edce
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 97 (2006)
    Issue (Month): 7 (August)
    Pages: 1586-1599

    as
    in new window

    Handle: RePEc:eee:jmvana:v:97:y:2006:i:7:p:1586-1599
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information: Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=622892&ref=622892_01_ooc_1&version=01

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Song Chen, 1993. "On the accuracy of empirical likelihood confidence regions for linear regression model," Annals of the Institute of Statistical Mathematics, Springer, vol. 45(4), pages 621-637, December.
    2. Qin, Gengsheng & Tsao, Min, 2003. "Empirical likelihood inference for median regression models for censored survival data," Journal of Multivariate Analysis, Elsevier, vol. 85(2), pages 416-430, May.
    3. Chen, S. X., 1994. "Empirical Likelihood Confidence Intervals for Linear Regression Coefficients," Journal of Multivariate Analysis, Elsevier, vol. 49(1), pages 24-40, April.
    4. Kani Chen, 2002. "Semiparametric analysis of transformation models with censored data," Biometrika, Biometrika Trust, vol. 89(3), pages 659-668, August.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:7:p:1586-1599. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.