IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Some positive dependence stochastic orders

  • Colangelo, Antonio
  • Scarsini, Marco
  • Shaked, Moshe

In this paper we study some stochastic orders of positive dependence that arise when the underlying random vectors are ordered with respect to some multivariate hazard rate stochastic orders, and have the same univariate marginal distributions. We show how the orders can be studied by restricting them to copulæ, we give a number of examples, and we study some positive dependence concepts that arise from the new positive dependence orders. We also discuss the relationship of the new orders to other positive dependence orders that have appeared in the literature.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Multivariate Analysis.

Volume (Year): 97 (2006)
Issue (Month): 1 (January)
Pages: 46-78

in new window

Handle: RePEc:eee:jmvana:v:97:y:2006:i:1:p:46-78
Contact details of provider: Web page:

Order Information: Postal:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Shaked, Moshe & Shanthikumar, J. George, 1997. "Supermodular Stochastic Orders and Positive Dependence of Random Vectors," Journal of Multivariate Analysis, Elsevier, vol. 61(1), pages 86-101, April.
  2. Marco Dall’Aglio & Marco Scarsini, 2000. "Zonoids, Linear Dependence, and Size-Biased Distributions on the Simplex," ICER Working Papers - Applied Mathematics Series 27-2003, ICER - International Centre for Economic Research, revised Jul 2003.
  3. Karlin, Samuel & Rinott, Yosef, 1980. "Classes of orderings of measures and related correlation inequalities II. Multivariate reverse rule distributions," Journal of Multivariate Analysis, Elsevier, vol. 10(4), pages 499-516, December.
  4. Hu, Taizhong & Khaledi, Baha-Eldin & Shaked, Moshe, 2003. "Multivariate hazard rate orders," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 173-189, January.
  5. Marco Scarsini & Antonio Colangelo & Moshe Shaked, 2005. "Some notions of multivariate positive dependence," Post-Print hal-00539601, HAL.
  6. Karlin, Samuel & Rinott, Yosef, 1980. "Classes of orderings of measures and related correlation inequalities. I. Multivariate totally positive distributions," Journal of Multivariate Analysis, Elsevier, vol. 10(4), pages 467-498, December.
  7. George Kimeldorf & Allan Sampson, 1989. "A framework for positive dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 41(1), pages 31-45, March.
  8. Collet, Pierre & López, F. Javier & Martínez, Servet, 2003. "Order relations of measures when avoiding decreasing sets," Statistics & Probability Letters, Elsevier, vol. 65(3), pages 165-175, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:1:p:46-78. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamier, Wendy)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.