IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v99y2008i3p358-371.html
   My bibliography  Save this article

Conditional orderings and positive dependence

Author

Listed:
  • Colangelo, Antonio
  • Hu, Taizhong
  • Shaked, Moshe

Abstract

Every univariate random variable is smaller, with respect to the ordinary stochastic order and with respect to the hazard rate order, than a right censored version of it. In this paper we attempt to generalize these facts to the multivariate setting. It turns out that in general such comparisons do not hold in the multivariate case, but they do under some assumptions of positive dependence. First we obtain results that compare the underlying random vectors with respect to the usual multivariate stochastic order. A larger slew of results, that yield comparisons of the underlying random vectors with respect to various multivariate hazard rate orders, is given next. Some comparisons with respect to the orthant orders are also discussed.

Suggested Citation

  • Colangelo, Antonio & Hu, Taizhong & Shaked, Moshe, 2008. "Conditional orderings and positive dependence," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 358-371, March.
  • Handle: RePEc:eee:jmvana:v:99:y:2008:i:3:p:358-371
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00189-8
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lindqvist, Bo Henry, 1988. "Association of probability measures on partially ordered spaces," Journal of Multivariate Analysis, Elsevier, vol. 26(2), pages 111-132, August.
    2. Colangelo, Antonio & Scarsini, Marco & Shaked, Moshe, 2006. "Some positive dependence stochastic orders," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 46-78, January.
    3. Hu, Taizhong & Khaledi, Baha-Eldin & Shaked, Moshe, 2003. "Multivariate hazard rate orders," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 173-189, January.
    4. Colangelo, Antonio & Scarsini, Marco & Shaked, Moshe, 2005. "Some notions of multivariate positive dependence," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 13-26, August.
    5. Karlin, Samuel & Rinott, Yosef, 1980. "Classes of orderings of measures and related correlation inequalities. I. Multivariate totally positive distributions," Journal of Multivariate Analysis, Elsevier, vol. 10(4), pages 467-498, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kundu, Debasis & Franco, Manuel & Vivo, Juana-Maria, 2014. "Multivariate distributions with proportional reversed hazard marginals," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 98-112.
    2. Cai, Jun & Wei, Wei, 2012. "Optimal reinsurance with positively dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 57-63.
    3. S. Ashrafi & M. Asadi, 2015. "On the stochastic and dependence properties of the three-state systems," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(3), pages 261-281, April.
    4. Franco, Manuel & Vivo, Juana-MarĂ­a, 2010. "A multivariate extension of Sarhan and Balakrishnan's bivariate distribution and its ageing and dependence properties," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 491-499, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:3:p:358-371. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.