IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Supermodular Stochastic Orders and Positive Dependence of Random Vectors

Listed author(s):
  • Shaked, Moshe
  • Shanthikumar, J. George

The supermodular and the symmetric supermodular stochastic orders have been cursorily studied in previous literature. In this paper we study these orders more thoroughly. First we obtain some basic properties of these orders. We then apply these results in order to obtain comparisons of random vectors with common values, but with different levels of multiplicity. Specifically, we show that if the vectors of the levels of multiplicity are ordered in the majorization order, then the associated random vectors are ordered in the symmetric supermodular stochastic order. In the non-symmetric case we obtain bounds (in the supermodular stochastic order sense) on such random vectors. Finally, we apply the results to problems of optimal assembly of reliability systems, of optimal allocation of minimal repair efforts, and of optimal allocation of reliability items.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Multivariate Analysis.

Volume (Year): 61 (1997)
Issue (Month): 1 (April)
Pages: 86-101

in new window

Handle: RePEc:eee:jmvana:v:61:y:1997:i:1:p:86-101
Contact details of provider: Web page:

Order Information: Postal:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Joe, Harry, 1990. "Multivariate concordance," Journal of Multivariate Analysis, Elsevier, vol. 35(1), pages 12-30, October.
  2. Shaked, M. & Shanthikumar, J. G. & Tong, Y. L., 1995. "Parametric Schur Convexity and Arrangement Monotonicity Properties of Partial Sums," Journal of Multivariate Analysis, Elsevier, vol. 53(2), pages 293-310, May.
  3. Block, Henry W. & Sampson, Allan R., 1988. "Conditionally ordered distributions," Journal of Multivariate Analysis, Elsevier, vol. 27(1), pages 91-104, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:61:y:1997:i:1:p:86-101. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.