IDEAS home Printed from
   My bibliography  Save this article

Universally Consistent Regression Function Estimation Using Hierarchial B-Splines


  • Kohler, Michael


Estimation of multivariate regression functions from i.i.d. data is considered. We construct estimates by empiricalL2-error minimization over data-dependent spaces of polynomial spline functions. For univariate regression function estimation these spaces are spline spaces with data-dependent knot sequences. In the multivariate case, we use so-called hierarchical spline spaces which are defined as linear span of tensor product B-splines with nested knot sequences. The knot sequences of the chosen B-splines depend locally on the data. Â We show the strongL2-consistency of the estimators without any condition on the underlying distribution. The estimators are similar to histogram regression estimators using data-dependent partitions and partitioning regression estimators based on local polynomial fits. The main difference is that the estimators considered here are smooth functions, which seems to be desirable especially in the case that the regression function to be estimated is smooth.

Suggested Citation

  • Kohler, Michael, 1999. "Universally Consistent Regression Function Estimation Using Hierarchial B-Splines," Journal of Multivariate Analysis, Elsevier, vol. 68(1), pages 138-164, January.
  • Handle: RePEc:eee:jmvana:v:68:y:1999:i:1:p:138-164

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Györfi, László & Walk, Harro, 1997. "On the strong universal consistency of a recursive regression estimate by Pál Révész," Statistics & Probability Letters, Elsevier, vol. 31(3), pages 177-183, January.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Kohler, Michael & Máthé, Kinga & Pintér, Márta, 2002. "Prediction from Randomly Right Censored Data," Journal of Multivariate Analysis, Elsevier, vol. 80(1), pages 73-100, January.
    2. Györfi, László & Walk, Harro, 2012. "Strongly consistent density estimation of the regression residual," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1923-1929.
    3. Kohler, Michael & Krzyzak, Adam & Walk, Harro, 2006. "Rates of convergence for partitioning and nearest neighbor regression estimates with unbounded data," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 311-323, February.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:68:y:1999:i:1:p:138-164. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.