IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Model-Building Problem of Periodically Correlatedm-Variate Moving Average Processes

  • Bentarzi, Mohamed
Registered author(s):

    The model-building problem of periodically correlatedm-variateq-dependent processes is considered. We show that for a given periodical autocovariance function of anm-variateMA(q) process there are two particular corresponding classes (that may reduce to one class) of periodic (equivalent) models. Furthermore, any other (intermediate) model is not periodic. It is, however, asymptotically periodic. The matrix coefficients of the particular periodic models are given in terms of limits of some periodic matrix continued fractions, which are a generalization of the classical periodic continued fractions (Wall, 1948). These periodic matrix continued fractions are particular solutions of some prospective and/or retrospective recursion equations, arising from the symbolic factorization of the associated linear autocovariance operator. In addition, we establish a procedure to calculate these limits. Numerical examples are given for the simple cases of periodically correlated univariate one- and two-dependent processes.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/B6WK9-45J4X62-1/2/515fc0d31c5adc7af3d7a7ef30c93bad
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 66 (1998)
    Issue (Month): 1 (July)
    Pages: 1-21

    as
    in new window

    Handle: RePEc:eee:jmvana:v:66:y:1998:i:1:p:1-21
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information: Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=622892&ref=622892_01_ooc_1&version=01

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. George E. P. Box & Steven Hillmer & George C. Tiao, 1979. "Analysis and Modeling of Seasonal Time Series," NBER Chapters, in: Seasonal Analysis of Economic Time Series, pages 309-346 National Bureau of Economic Research, Inc.
    2. Osborn, Denise R., 1991. "The implications of periodically varying coefficients for seasonal time-series processes," Journal of Econometrics, Elsevier, vol. 48(3), pages 373-384, June.
    3. Parzen, Emanuel & Pagano, Marcello, 1979. "An approach to modeling seasonally stationary time series," Journal of Econometrics, Elsevier, vol. 9(1-2), pages 137-153, January.
    4. Franses, Philip Hans, 1994. "A multivariate approach to modeling univariate seasonal time series," Journal of Econometrics, Elsevier, vol. 63(1), pages 133-151, July.
    5. Marc Hallin & Mohamed Bentarzi, 1996. "Locally optimal tests against periodic autoregression: parametric and nonparametric approaches," ULB Institutional Repository 2013/2063, ULB -- Universite Libre de Bruxelles.
    6. Marc Hallin & Mohamed Bentarzi, 1994. "On the invertibility of periodic moving-average models," ULB Institutional Repository 2013/2047, ULB -- Universite Libre de Bruxelles.
    7. Marc Hallin, 1984. "Spectral factorization of nonstationary moving average processes," ULB Institutional Repository 2013/2001, ULB -- Universite Libre de Bruxelles.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:66:y:1998:i:1:p:1-21. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.