IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v167y2018icp31-48.html
   My bibliography  Save this article

An expectation–maximization algorithm for the matrix normal distribution with an application in remote sensing

Author

Listed:
  • Glanz, Hunter
  • Carvalho, Luis

Abstract

Dramatic increases in the size and dimensionality of many modern datasets make crucial the need for sophisticated methods that can exploit inherent structure and handle missing values. In this article we derive an expectation–maximization (EM) algorithm for the matrix normal distribution, a distribution well-suited for naturally structured data such as spatio-temporal data. We review previously established maximum likelihood matrix normal estimates, and then consider the situation involving missing data. We apply our EM method in a simulation study exploring errors across different dimensions and proportions of missing data. We compare these errors to those from three alternative methods and show that our proposed EM method outperforms them in all scenarios. Finally, we implement the proposed EM method in a novel way on a satellite image dataset to investigate land-cover classification separability.

Suggested Citation

  • Glanz, Hunter & Carvalho, Luis, 2018. "An expectation–maximization algorithm for the matrix normal distribution with an application in remote sensing," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 31-48.
  • Handle: RePEc:eee:jmvana:v:167:y:2018:i:c:p:31-48
    DOI: 10.1016/j.jmva.2018.03.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X17300477
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2018.03.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joseph G. Ibrahim & Ming-Hui Chen & Stuart R. Lipsitz & Amy H. Herring, 2005. "Missing-Data Methods for Generalized Linear Models: A Comparative Review," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 332-346, March.
    2. Roś, Beata & Bijma, Fetsje & de Munck, Jan C. & de Gunst, Mathisca C.M., 2016. "Existence and uniqueness of the maximum likelihood estimator for models with a Kronecker product covariance structure," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 345-361.
    3. Dayanand Naik & Shantha Rao, 2001. "Analysis of multivariate repeated measures data with a Kronecker product structured covariance matrix," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(1), pages 91-105.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kohli, Priya & Garcia, Tanya P. & Pourahmadi, Mohsen, 2016. "Modeling the Cholesky factors of covariance matrices of multivariate longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 87-100.
    2. Kim, Chulmin & Zimmerman, Dale L., 2012. "Unconstrained models for the covariance structure of multivariate longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 104-118.
    3. Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
    4. Feng, Sanying & Lian, Heng & Xue, Liugen, 2016. "A new nested Cholesky decomposition and estimation for the covariance matrix of bivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 102(C), pages 98-109.
    5. Li Cai & Lijie Gu & Qihua Wang & Suojin Wang, 2021. "Simultaneous confidence bands for nonparametric regression with missing covariate data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1249-1279, December.
    6. Wojciech Łukaszonek, 2017. "A Multidimensional And Dynamised Classification Of Polish Provinces Based On Selected Features Of Higher Education In 2002–2013," Statistics in Transition New Series, Polish Statistical Association, vol. 18(2), pages 271-290, June.
    7. Filipiak, Katarzyna & Klein, Daniel & Roy, Anuradha, 2016. "Score test for a separable covariance structure with the first component as compound symmetric correlation matrix," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 105-124.
    8. McDonough, Ian K. & Millimet, Daniel L., 2017. "Missing data, imputation, and endogeneity," Journal of Econometrics, Elsevier, vol. 199(2), pages 141-155.
    9. J. Andrew Royle, 2009. "Analysis of Capture–Recapture Models with Individual Covariates Using Data Augmentation," Biometrics, The International Biometric Society, vol. 65(1), pages 267-274, March.
    10. Xie Yanmei & Zhang Biao, 2017. "Empirical Likelihood in Nonignorable Covariate-Missing Data Problems," The International Journal of Biostatistics, De Gruyter, vol. 13(1), pages 1-20, May.
    11. Jiang, Depeng & Zhao, Puying & Tang, Niansheng, 2016. "A propensity score adjustment method for regression models with nonignorable missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 98-119.
    12. Lei Jin & Suojin Wang, 2010. "A Model Validation Procedure when Covariate Data are Missing at Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 403-421, September.
    13. J. F. Lawless, 2018. "Two-phase outcome-dependent studies for failure times and testing for effects of expensive covariates," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 28-44, January.
    14. el Bouhaddani, Said & Uh, Hae-Won & Hayward, Caroline & Jongbloed, Geurt & Houwing-Duistermaat, Jeanine, 2018. "Probabilistic partial least squares model: Identifiability, estimation and application," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 331-346.
    15. Hui Yao & Sungduk Kim & Ming-Hui Chen & Joseph G. Ibrahim & Arvind K. Shah & Jianxin Lin, 2015. "Bayesian Inference for Multivariate Meta-Regression With a Partially Observed Within-Study Sample Covariance Matrix," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 528-544, June.
    16. Yi Qian & Hui Xie, 2011. "No Customer Left Behind: A Distribution-Free Bayesian Approach to Accounting for Missing Xs in Marketing Models," Marketing Science, INFORMS, vol. 30(4), pages 717-736, July.
    17. Jiang, Wei & Josse, Julie & Lavielle, Marc, 2020. "Logistic regression with missing covariates—Parameter estimation, model selection and prediction within a joint-modeling framework," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    18. Lingzhe Guo & Reza Modarres, 2020. "Testing the equality of matrix distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 289-307, June.
    19. Jared S. Murray & Jerome P. Reiter, 2016. "Multiple Imputation of Missing Categorical and Continuous Values via Bayesian Mixture Models With Local Dependence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1466-1479, October.
    20. Han, Peisong, 2012. "A note on improving the efficiency of inverse probability weighted estimator using the augmentation term," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2221-2228.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:167:y:2018:i:c:p:31-48. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.