IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v125y2014icp204-221.html
   My bibliography  Save this article

Monitoring procedure for parameter change in causal time series

Author

Listed:
  • Bardet, Jean-Marc
  • Kengne, William

Abstract

We propose a new sequential procedure to detect change in the parameters of a process X=(Xt)t∈Z belonging to a large class of causal models (such as AR(∞), ARCH(∞), TARCH(∞), or ARMA–GARCH processes). The procedure is based on a difference between the historical parameter estimator and the updated parameter estimator, where both these estimators are quasi-likelihood estimators. Unlike classical recursive fluctuation test, the updated estimator is computed without the historical observations. The asymptotic behavior of the test is studied and the consistency in power as well as an upper bound of the detection delay is obtained. Some simulation results are reported with comparisons to some other existing procedures exhibiting the accuracy of our new procedure. This procedure coupled with retrospective tests is applied to solve off-line multiple breaks detection in the daily closing values of the FTSE 100 stock index.

Suggested Citation

  • Bardet, Jean-Marc & Kengne, William, 2014. "Monitoring procedure for parameter change in causal time series," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 204-221.
  • Handle: RePEc:eee:jmvana:v:125:y:2014:i:c:p:204-221
    DOI: 10.1016/j.jmva.2013.12.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X13002649
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2013.12.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robinson, P. M., 1991. "Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression," Journal of Econometrics, Elsevier, vol. 47(1), pages 67-84, January.
    2. Okyoung Na & Youngmi Lee & Sangyeol Lee, 2011. "Monitoring parameter change in time series models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(2), pages 171-199, June.
    3. Doukhan, Paul & Wintenberger, Olivier, 2008. "Weakly dependent chains with infinite memory," Stochastic Processes and their Applications, Elsevier, vol. 118(11), pages 1997-2013, November.
    4. Alexander Aue & Lajos Horváth & Marie Hušková & Piotr Kokoszka, 2006. "Change-point monitoring in linear models," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 373-403, November.
    5. William Charky Kengne, 2012. "Testing for parameter constancy in general causal time‐series models," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(3), pages 503-518, May.
    6. Berkes, István & Gombay, Edit & Horváth, Lajos & Kokoszka, Piotr, 2004. "SEQUENTIAL CHANGE-POINT DETECTION IN GARCH(p,q) MODELS," Econometric Theory, Cambridge University Press, vol. 20(6), pages 1140-1167, December.
    7. Rabemananjara, R & Zakoian, J M, 1993. "Threshold Arch Models and Asymmetries in Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(1), pages 31-49, Jan.-Marc.
    8. Leisch, Friedrich & Hornik, Kurt & Kuan, Chung-Ming, 2000. "Monitoring Structural Changes With The Generalized Fluctuation Test," Econometric Theory, Cambridge University Press, vol. 16(6), pages 835-854, December.
    9. Richard A. Davis & Thomas C. M. Lee & Gabriel A. Rodriguez‐Yam, 2008. "Break Detection for a Class of Nonlinear Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 834-867, September.
    10. Marie Hušková & Claudia Kirch, 2012. "Bootstrapping sequential change-point tests for linear regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 673-708, July.
    11. Chu, Chia-Shang James & Stinchcombe, Maxwell & White, Halbert, 1996. "Monitoring Structural Change," Econometrica, Econometric Society, vol. 64(5), pages 1045-1065, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kengne, William, 2021. "Strongly consistent model selection for general causal time series," Statistics & Probability Letters, Elsevier, vol. 171(C).
    2. Mamadou Lamine Diop & William Kengne, 2022. "Poisson QMLE for change-point detection in general integer-valued time series models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(3), pages 373-403, April.
    3. William Kengne & Isidore S. Ngongo, 2022. "Inference for nonstationary time series of counts with application to change-point problems," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 801-835, August.
    4. KUROZUMI, Eiji & 黒住, 英司, 2016. "Monitoring Parameter Constancy with Endogenous Regressors," Discussion Papers 2016-01, Graduate School of Economics, Hitotsubashi University.
    5. Joseph Ngatchou-Wandji & Echarif Elharfaoui & Michel Harel, 2022. "On change-points tests based on two-samples U-Statistics for weakly dependent observations," Statistical Papers, Springer, vol. 63(1), pages 287-316, February.
    6. Mohamed Salah Eddine Arrouch & Echarif Elharfaoui & Joseph Ngatchou-Wandji, 2023. "Change-Point Detection in the Volatility of Conditional Heteroscedastic Autoregressive Nonlinear Models," Mathematics, MDPI, vol. 11(18), pages 1-31, September.
    7. Pierre Perron & Eduardo Zorita & Eiji Kurozumi, 2017. "Monitoring Parameter Constancy with Endogenous Regressors," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(5), pages 791-805, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William Kengne & Isidore S. Ngongo, 2022. "Inference for nonstationary time series of counts with application to change-point problems," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 801-835, August.
    2. Elena Andreou & Eric Ghysels, 2004. "Monitoring for Disruptions in Financial Markets," CIRANO Working Papers 2004s-26, CIRANO.
    3. KUROZUMI, Eiji & 黒住, 英司, 2016. "Monitoring Parameter Constancy with Endogenous Regressors," Discussion Papers 2016-01, Graduate School of Economics, Hitotsubashi University.
    4. Andreou, Elena & Ghysels, Eric, 2006. "Monitoring disruptions in financial markets," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 77-124.
    5. Aue, Alexander & Horváth, Lajos & Reimherr, Matthew L., 2009. "Delay times of sequential procedures for multiple time series regression models," Journal of Econometrics, Elsevier, vol. 149(2), pages 174-190, April.
    6. Josua Gösmann & Tobias Kley & Holger Dette, 2021. "A new approach for open‐end sequential change point monitoring," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(1), pages 63-84, January.
    7. Pierre Perron & Eduardo Zorita & Eiji Kurozumi, 2017. "Monitoring Parameter Constancy with Endogenous Regressors," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(5), pages 791-805, September.
    8. Claudia Kirch & Christina Stoehr, 2022. "Sequential change point tests based on U‐statistics," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1184-1214, September.
    9. Otto, Sven & Breitung, Jörg, 2020. "Backward CUSUM for Testing and Monitoring Structural Change," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224533, Verein für Socialpolitik / German Economic Association.
    10. Pape, Katharina & Wied, Dominik & Galeano, Pedro, 2016. "Monitoring multivariate variance changes," Journal of Empirical Finance, Elsevier, vol. 39(PA), pages 54-68.
    11. Okyoung Na & Youngmi Lee & Sangyeol Lee, 2011. "Monitoring parameter change in time series models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(2), pages 171-199, June.
    12. Lee, Sangyeol & Park, Siyun, 2009. "The monitoring test for the stability of regression models with nonstationary regressors," Economics Letters, Elsevier, vol. 105(3), pages 250-252, December.
    13. Sven Otto & Jorg Breitung, 2020. "Backward CUSUM for Testing and Monitoring Structural Change with an Application to COVID-19 Pandemic Data," Papers 2003.02682, arXiv.org, revised Mar 2022.
    14. Christopher Dienes & Alexander Aue, 2014. "On-Line Monitoring Of Pollution Concentrations With Autoregressive Moving Average Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(3), pages 239-261, May.
    15. Kengne, William, 2021. "Strongly consistent model selection for general causal time series," Statistics & Probability Letters, Elsevier, vol. 171(C).
    16. Gabriela Ciuperca, 2022. "Real-time detection of a change-point in a linear expectile model," Statistical Papers, Springer, vol. 63(4), pages 1323-1367, August.
    17. Marie Hušková & Claudia Kirch, 2012. "Bootstrapping sequential change-point tests for linear regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 673-708, July.
    18. Zhou, Mi & Wang, Huixia Judy & Tang, Yanlin, 2015. "Sequential change point detection in linear quantile regression models," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 98-103.
    19. Bernales, Alejandro & Guidolin, Massimo, 2015. "Learning to smile: Can rational learning explain predictable dynamics in the implied volatility surface?," Journal of Financial Markets, Elsevier, vol. 26(C), pages 1-37.
    20. Lajos Horváth & Gregory Rice, 2014. "Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 219-255, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:125:y:2014:i:c:p:204-221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.