Analysis of MCMC algorithms for Bayesian linear regression with Laplace errors
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jmva.2013.02.004
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Khare, Kshitij & Hobert, James P., 2012. "Geometric ergodicity of the Gibbs sampler for Bayesian quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 108-116.
- Jones, Galin L. & Haran, Murali & Caffo, Brian S. & Neath, Ronald, 2006. "Fixed-Width Output Analysis for Markov Chain Monte Carlo," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1537-1547, December.
- Ying Yuan & Guosheng Yin, 2010. "Bayesian Quantile Regression for Longitudinal Studies with Nonignorable Missing Data," Biometrics, The International Biometric Society, vol. 66(1), pages 105-114, March.
- Roy, Vivekananda & Hobert, James P., 2010. "On Monte Carlo methods for Bayesian multivariate regression models with heavy-tailed errors," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1190-1202, May.
- Hideo Kozumi & Genya Kobayashi, 2009. "Gibbs Sampling Methods for Bayesian Quantile Regression," Discussion Papers 2009-02, Kobe University, Graduate School of Business Administration.
- Yu, Keming & Moyeed, Rana A., 2001. "Bayesian quantile regression," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 437-447, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jung, Yeun Ji & Hobert, James P., 2014. "Spectral properties of MCMC algorithms for Bayesian linear regression with generalized hyperbolic errors," Statistics & Probability Letters, Elsevier, vol. 95(C), pages 92-100.
- Yang Yang & Lichun Wang, 2024. "A non-iteration Bayesian sampling algorithm for robust seemingly unrelated regression models $$^*$$ ∗," Computational Statistics, Springer, vol. 39(3), pages 1281-1300, May.
- James P. Hobert & Kshitij Khare, 2016. "Discussion," International Statistical Review, International Statistical Institute, vol. 84(3), pages 349-356, December.
- Chamberlain Mbah & Kris Peremans & Stefan Van Aelst & Dries F. Benoit, 2019. "Robust Bayesian seemingly unrelated regression model," Computational Statistics, Springer, vol. 34(3), pages 1135-1157, September.
- Zijian Zeng & Meng Li, 2020. "Bayesian Median Autoregression for Robust Time Series Forecasting," Papers 2001.01116, arXiv.org, revised Dec 2020.
- Zeng, Zijian & Li, Meng, 2021. "Bayesian median autoregression for robust time series forecasting," International Journal of Forecasting, Elsevier, vol. 37(2), pages 1000-1010.
- Yunwen Yang & Huixia Judy Wang & Xuming He, 2016. "Posterior Inference in Bayesian Quantile Regression with Asymmetric Laplace Likelihood," International Statistical Review, International Statistical Institute, vol. 84(3), pages 327-344, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rahim Alhamzawi, 2016. "Bayesian Analysis of Composite Quantile Regression," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 358-373, October.
- Genya Kobayashi & Hideo Kozumi, 2012. "Bayesian analysis of quantile regression for censored dynamic panel data," Computational Statistics, Springer, vol. 27(2), pages 359-380, June.
- R. Alhamzawi & K. Yu & D. F. Benoit, 2011. "Bayesian adaptive Lasso quantile regression," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 11/728, Ghent University, Faculty of Economics and Business Administration.
- Alhamzawi, Rahim & Yu, Keming, 2013. "Conjugate priors and variable selection for Bayesian quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 209-219.
- Alhamzawi, Rahim, 2016. "Bayesian model selection in ordinal quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 68-78.
- repec:hum:wpaper:sfb649dp2014-021 is not listed on IDEAS
- Hemant Kulkarni & Jayabrata Biswas & Kiranmoy Das, 2019. "A joint quantile regression model for multiple longitudinal outcomes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 453-473, December.
- Wu Wang & Zhongyi Zhu, 2017. "Conditional empirical likelihood for quantile regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(1), pages 1-16, January.
- Yuzhu Tian & Er’qian Li & Maozai Tian, 2016. "Bayesian joint quantile regression for mixed effects models with censoring and errors in covariates," Computational Statistics, Springer, vol. 31(3), pages 1031-1057, September.
- Xianhua Dai & Wolfgang Karl Härdle & Keming Yu, 2016.
"Do maternal health problems influence child's worrying status? Evidence from the British Cohort Study,"
Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 2941-2955, December.
- Dai, Xianhua & Härdle, Wolfgang Karl & Yu, Keming, 2014. "Do maternal health problems influence child's worrying status? Evidence from British cohort study," SFB 649 Discussion Papers 2014-021, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Yingying Hu & Huixia Judy Wang & Xuming He & Jianhua Guo, 2021. "Bayesian joint-quantile regression," Computational Statistics, Springer, vol. 36(3), pages 2033-2053, September.
- Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
- Michel Lubrano & Abdoul Aziz Junior Ndoye, 2014.
"Bayesian Unconditional Quantile Regression: An Analysis of Recent Expansions in Wage Structure and Earnings Inequality in the US 1992–2009,"
Scottish Journal of Political Economy, Scottish Economic Society, vol. 61(2), pages 129-153, May.
- Michel Lubrano & Abdoul Aziz Junior Ndoye, 2012. "Bayesian Unconditional Quantile Regression. An Analysis of Recent Expansions in Wage Structure and Earnings Inequality in the U.S. 1992-2009," AMSE Working Papers 1203, Aix-Marseille School of Economics, France.
- Michel Lubrano & Abdoul Aziz Junior Ndoye, 2023. "Bayesian Unconditional Quantile Regression: An Analysis of Recent Expansions in Wage Structure and Earnings Inequality in the US 1992-2009," Working Papers hal-01463115, HAL.
- Michel Lubrano & Abdoul Aziz Junior Ndoye, 2012. "Bayesian Unconditional Quantile Regression: An Analysis of Recent Expansions in Wage Structure and Earnings Inequality in the U.S. 1992-2009," Working Papers halshs-00790688, HAL.
- Dries Benoit & Rahim Alhamzawi & Keming Yu, 2013. "Bayesian lasso binary quantile regression," Computational Statistics, Springer, vol. 28(6), pages 2861-2873, December.
- Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
- Lane F. Burgette & Jerome P. Reiter, 2012. "Modeling Adverse Birth Outcomes via Confirmatory Factor Quantile Regression," Biometrics, The International Biometric Society, vol. 68(1), pages 92-100, March.
- Yuta Kurose & Yasuhiro Omori, 2012. "Bayesian Analysis of Time-Varying Quantiles Using a Smoothing Spline," CIRJE F-Series CIRJE-F-845, CIRJE, Faculty of Economics, University of Tokyo.
- Ferrara, Laurent & Mogliani, Matteo & Sahuc, Jean-Guillaume, 2022.
"High-frequency monitoring of growth at risk,"
International Journal of Forecasting, Elsevier, vol. 38(2), pages 582-595.
- Laurent Ferrara & Matteo Mogliani & Jean-Guillaume Sahuc, 2020. "High-Frequency Monitoring of Growth-at-Risk," CAMA Working Papers 2020-97, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Jean-Guillaume Sahuc & Matteo Mogliani & Laurent Ferrara, 2022. "High-frequency monitoring of growth at risk," Post-Print hal-03361425, HAL.
- Jing Wang, 2012. "Bayesian quantile regression for parametric nonlinear mixed effects models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(3), pages 279-295, August.
- Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
- Philip Kostov & Julie Le Gallo, 2015.
"Convergence: A Story of Quantiles and Spillovers,"
Kyklos, Wiley Blackwell, vol. 68(4), pages 552-576, November.
- Philip Kostov & Julie Le Gallo, 2015. "Convergence: A Story of Quantiles and Spillovers," Post-Print hal-01868567, HAL.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:117:y:2013:i:c:p:32-40. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/jmvana/v117y2013icp32-40.html