IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v114y2013icp201-208.html
   My bibliography  Save this article

Dependence structure of bivariate order statistics with applications to Bayramoglu’s distributions

Author

Listed:
  • Huang, J.S.
  • Dou, Xiaoling
  • Kuriki, Satoshi
  • Lin, G.D.

Abstract

We study the dependence structure of bivariate order statistics from bivariate distributions, and prove that if the underlying bivariate distribution H is positive quadrant dependent (PQD) then so is each pair of bivariate order statistics. As an application, we show that if H is PQD, the bivariate distribution K+(n), recently proposed by Bairamov and Bayramoglu (2012) [1], is greater than or equal to Baker’s (2008) [2] distribution H+(n), and hence K+(n) attains a correlation higher than that of H+(n). We give two explicit forms of the intractable K+(n) and prove that for all n≥2, K+(n) is PQD regardless of H. We also show that if H is PQD, K+(n) converges weakly to the Fréchet–Hoeffding upper bound as n tends to infinity.

Suggested Citation

  • Huang, J.S. & Dou, Xiaoling & Kuriki, Satoshi & Lin, G.D., 2013. "Dependence structure of bivariate order statistics with applications to Bayramoglu’s distributions," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 201-208.
  • Handle: RePEc:eee:jmvana:v:114:y:2013:i:c:p:201-208
    DOI: 10.1016/j.jmva.2012.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X12001777
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2012.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baker, Rose, 2008. "An order-statistics-based method for constructing multivariate distributions with fixed marginals," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2312-2327, November.
    2. H. Barakat, 2001. "The Asymptotic Distribution Theory of Bivariate Order Statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(3), pages 487-497, September.
    3. Boland, Philip J. & Hollander, Myles & Joag-Dev, Kumar & Kochar, Subhash, 1996. "Bivariate Dependence Properties of Order Statistics," Journal of Multivariate Analysis, Elsevier, vol. 56(1), pages 75-89, January.
    4. Masaaki Sibuya, 1959. "Bivariate extreme statistics, I," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 11(2), pages 195-210, June.
    5. Lin, G.D. & Huang, J.S., 2010. "A note on the maximum correlation for Baker's bivariate distributions with fixed marginals," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2227-2233, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konul Bayramoglu Kavlak, 2017. "Reliability and mean residual life functions of coherent systems in an active redundancy," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(1), pages 19-28, February.
    2. Gulder Kemalbay & Ismihan Bayramoglu (Bairamov), 2015. "Joint distribution of new sample rank of bivariate order statistics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(10), pages 2280-2289, October.
    3. Xiaoling Dou & Satoshi Kuriki & Gwo Dong Lin & Donald Richards, 2021. "Dependence Properties of B-Spline Copulas," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 283-311, February.
    4. Dou, Xiaoling & Kuriki, Satoshi & Lin, Gwo Dong & Richards, Donald, 2016. "EM algorithms for estimating the Bernstein copula," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 228-245.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Nan & Wang, Fang & Yang, Jingping, 2017. "Remarks on composite Bernstein copula and its application to credit risk analysis," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 38-48.
    2. Bairamov, I. & Bayramoglu, K., 2013. "From the Huang–Kotz FGM distribution to Baker’s bivariate distribution," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 106-115.
    3. Dou, Xiaoling & Kuriki, Satoshi & Lin, Gwo Dong & Richards, Donald, 2016. "EM algorithms for estimating the Bernstein copula," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 228-245.
    4. Markus Haas, 2018. "A note on the absolute moments of the bivariate normal distribution," Economics Bulletin, AccessEcon, vol. 38(1), pages 650-656.
    5. Zhuang, Weiwei & Yao, Junchao & Hu, Taizhong, 2010. "Conditional ordering of order statistics," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 640-644, March.
    6. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2023. "Risk aggregation with FGM copulas," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 102-120.
    7. Zhang, Zhengjun & Zhu, Bin, 2016. "Copula structured M4 processes with application to high-frequency financial data," Journal of Econometrics, Elsevier, vol. 194(2), pages 231-241.
    8. Moore, Kyle & Zhou, Chen, 2014. "The determinants of systemic importance," LSE Research Online Documents on Economics 59289, London School of Economics and Political Science, LSE Library.
    9. Lin Liu & Rajarshi Mukherjee & James M. Robins, 2023. "Assumption-lean falsification tests of rate double-robustness of double-machine-learning estimators," Papers 2306.10590, arXiv.org, revised Aug 2023.
    10. Hansjörg Albrecher & Martin Bladt & Mogens Bladt, 2021. "Multivariate matrix Mittag–Leffler distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(2), pages 369-394, April.
    11. Franco, Manuel & Vivo, Juana-María, 2010. "A multivariate extension of Sarhan and Balakrishnan's bivariate distribution and its ageing and dependence properties," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 491-499, March.
    12. Emmanuel Jurczenko & Bertrand Maillet & Paul Merlin, 2008. "Efficient Frontier for Robust Higher-order Moment Portfolio Selection," Post-Print halshs-00336475, HAL.
    13. Hofert, Marius & Vrins, Frédéric, 2013. "Sibuya copulas," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 318-337.
    14. Segers, Johan & Sibuya, Masaaki & Tsukahara, Hideatsu, 2017. "The empirical beta copula," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 35-51.
    15. Kundu, Debasis & Franco, Manuel & Vivo, Juana-Maria, 2014. "Multivariate distributions with proportional reversed hazard marginals," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 98-112.
    16. Furman, Edward & Kuznetsov, Alexey & Su, Jianxi & Zitikis, Ričardas, 2016. "Tail dependence of the Gaussian copula revisited," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 97-103.
    17. Cheung, Eric C.K. & Peralta, Oscar & Woo, Jae-Kyung, 2022. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 364-389.
    18. Victor Chernozhukov & Ivan Fernandez-Val & Siyi Luo, 2023. "Distribution regression with sample selection and UK wage decomposition," CeMMAP working papers 09/23, Institute for Fiscal Studies.
    19. Victor Chernozhukov & Ivan Fernandez-Val & Siyi Luo, 2018. "Distribution regression with sample selection, with an application to wage decompositions in the UK," CeMMAP working papers CWP68/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Russell Brook T. & Hogan Paul, 2018. "Analyzing dependence matrices to investigate relationships between national football league combine event performances," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 14(4), pages 201-212, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:114:y:2013:i:c:p:201-208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.