IDEAS home Printed from https://ideas.repec.org/a/eee/jetheo/v146y2011i2p656-671.html
   My bibliography  Save this article

Balance and discontinuities in infinite games with type-dependent strategies

Author

Listed:
  • Stinchcombe, Maxwell B.

Abstract

Under study are games in which players receive private signals and then simultaneously choose actions from compact sets. Payoffs are measurable in signals and jointly continuous in actions. Stinchcombe (2011) [19] proves the existence of correlated equilibria for this class of games. This paper is a study of the information structures for these games, the discontinuous expected utility functions they give rise to, and the notion of a balanced approximation to an infinite game with discontinuous payoffs.

Suggested Citation

  • Stinchcombe, Maxwell B., 2011. "Balance and discontinuities in infinite games with type-dependent strategies," Journal of Economic Theory, Elsevier, vol. 146(2), pages 656-671, March.
  • Handle: RePEc:eee:jetheo:v:146:y:2011:i:2:p:656-671
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0022-0531(10)00172-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Drew Fudenberg & David Levine, 2008. "Limit Games and Limit Equilibria," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 2, pages 21-39, World Scientific Publishing Co. Pte. Ltd..
    2. Stinchcombe, Maxwell B., 2011. "Correlated equilibrium existence for infinite games with type-dependent strategies," Journal of Economic Theory, Elsevier, vol. 146(2), pages 638-655, March.
    3. Paul R. Milgrom & Robert J. Weber, 1985. "Distributional Strategies for Games with Incomplete Information," Mathematics of Operations Research, INFORMS, vol. 10(4), pages 619-632, November.
    4. Cotter, Kevin D., 1991. "Correlated equilibrium in games with type-dependent strategies," Journal of Economic Theory, Elsevier, vol. 54(1), pages 48-68, June.
    5. Simon, Leo K & Zame, William R, 1990. "Discontinuous Games and Endogenous Sharing Rules," Econometrica, Econometric Society, vol. 58(4), pages 861-872, July.
    6. Harris, Christopher J. & Stinchcombe, Maxwell B. & Zame, William R., 2005. "Nearly compact and continuous normal form games: characterizations and equilibrium existence," Games and Economic Behavior, Elsevier, vol. 50(2), pages 208-224, February.
    7. Manelli, Alejandro M, 1996. "Cheap Talk and Sequential Equilibria in Signaling Games," Econometrica, Econometric Society, vol. 64(4), pages 917-942, July.
    8. Simon, Leo K. & Zame, William R., 1987. "Discontinous Games and Endogenous Sharing Rules," Department of Economics, Working Paper Series qt8n46v2wv, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    9. Philip J. Reny, 1999. "On the Existence of Pure and Mixed Strategy Nash Equilibria in Discontinuous Games," Econometrica, Econometric Society, vol. 67(5), pages 1029-1056, September.
    10. Anderson Robert M. & Zame William R., 2001. "Genericity with Infinitely Many Parameters," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 1(1), pages 1-64, February.
    11. Stinchcombe, Maxwell B., 2005. "Nash equilibrium and generalized integration for infinite normal form games," Games and Economic Behavior, Elsevier, vol. 50(2), pages 332-365, February.
    12. Erik J. Balder, 1988. "Generalized Equilibrium Results for Games with Incomplete Information," Mathematics of Operations Research, INFORMS, vol. 13(2), pages 265-276, May.
    13. Harris, Christopher & Reny, Philip & Robson, Arthur, 1995. "The Existence of Subgame-Perfect Equilibrium in Continuous Games with Almost Perfect Information: A Case for Public Randomization," Econometrica, Econometric Society, vol. 63(3), pages 507-544, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yehuda John Levy, 2020. "On games without approximate equilibria," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(4), pages 1125-1128, December.
    2. Oriol Carbonell-Nicolau, 2021. "Equilibria in infinite games of incomplete information," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(2), pages 311-360, June.
    3. Jacobovic, Royi & Levy, Yehuda John & Solan, Eilon, 0. "Bayesian games with nested information," Theoretical Economics, Econometric Society.
    4. Ori Haimanko, 2022. "Equilibrium existence in two-player contests without absolute continuity of information," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 10(1), pages 27-39, May.
    5. Levy, Yehuda John, 2024. "Bayesian equilibrium: From local to global," Journal of Mathematical Economics, Elsevier, vol. 113(C).
    6. He, Wei & Sun, Yeneng, 2019. "Pure-strategy equilibria in Bayesian games," Journal of Economic Theory, Elsevier, vol. 180(C), pages 11-49.
    7. Michael Greinecker & Christoph Kuzmics, 2022. "Limit Orders and Knightian Uncertainty," Papers 2208.10804, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stinchcombe, Maxwell B., 2011. "Correlated equilibrium existence for infinite games with type-dependent strategies," Journal of Economic Theory, Elsevier, vol. 146(2), pages 638-655, March.
    2. Capraro, Valerio & Scarsini, Marco, 2013. "Existence of equilibria in countable games: An algebraic approach," Games and Economic Behavior, Elsevier, vol. 79(C), pages 163-180.
    3. Oriol Carbonell-Nicolau, 2021. "Equilibria in infinite games of incomplete information," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(2), pages 311-360, June.
    4. Sofia Moroni, 2020. "Existence of Trembling hand perfect and sequential equilibrium in Stochastic Games," Working Paper 6837, Department of Economics, University of Pittsburgh.
    5. Carmona, Guilherme & Podczeck, Konrad, 2018. "Invariance of the equilibrium set of games with an endogenous sharing rule," Journal of Economic Theory, Elsevier, vol. 177(C), pages 1-33.
    6. He, Wei & Sun, Yeneng, 2020. "Dynamic games with (almost) perfect information," Theoretical Economics, Econometric Society, vol. 15(2), May.
    7. János Flesch & Dries Vermeulen & Anna Zseleva, 2021. "Legitimate equilibrium," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(4), pages 787-800, December.
    8. Frédéric Koessler & Marie Laclau & Tristan Tomala, 2022. "Interactive Information Design," Mathematics of Operations Research, INFORMS, vol. 47(1), pages 153-175, February.
    9. Nessah, Rabia & Tian, Guoqiang, 2008. "Existence of Equilibria in Discontinuous Games," MPRA Paper 41206, University Library of Munich, Germany, revised Mar 2010.
    10. Harris, Christopher J. & Stinchcombe, Maxwell B. & Zame, William R., 2005. "Nearly compact and continuous normal form games: characterizations and equilibrium existence," Games and Economic Behavior, Elsevier, vol. 50(2), pages 208-224, February.
    11. Balder, Erik J., 2004. "An equilibrium existence result for games with incomplete information and indeterminate outcomes," Journal of Mathematical Economics, Elsevier, vol. 40(3-4), pages 297-320, June.
    12. Gagan Ghosh, 2015. "Non-existence of equilibria in simultaneous auctions with a common budget-constraint," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(2), pages 253-274, May.
    13. Yuhki Hosoya & Chaowen Yu, 2022. "On the approximate purification of mixed strategies in games with infinite action sets," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 10(1), pages 69-93, May.
    14. Gatti, J.R.J., 2005. "A Note on the Existence of Nash Equilibrium in Games with Discontinuous Payoffs," Cambridge Working Papers in Economics 0510, Faculty of Economics, University of Cambridge.
    15. Michal Bresky, 2008. "Pure Equilibrium Strategies in Multi-unit Auctions with Private Value Bidders," CERGE-EI Working Papers wp376, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    16. Philippe Bich & Rida Laraki, 2017. "Externalities in Economies with Endogenous Sharing Rules," PSE-Ecole d'économie de Paris (Postprint) halshs-01437507, HAL.
    17. Dutta, Rohan & Levine, David Knudsen & Modica, Salvatore, 2018. "Collusion constrained equilibrium," Theoretical Economics, Econometric Society, vol. 13(1), January.
    18. Germano, Fabrizio, 2003. "Bertrand-edgeworth equilibria in finite exchange economies," Journal of Mathematical Economics, Elsevier, vol. 39(5-6), pages 677-692, July.
    19. He, Wei & Yannelis, Nicholas C., 2016. "Existence of equilibria in discontinuous Bayesian games," Journal of Economic Theory, Elsevier, vol. 162(C), pages 181-194.
    20. Pär Holmberg, 2017. "Pro‐competitive Rationing in Multi‐unit Auctions," Economic Journal, Royal Economic Society, vol. 127(605), pages 372-395, October.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jetheo:v:146:y:2011:i:2:p:656-671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622869 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.