IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v24y2012icp36-41.html
   My bibliography  Save this article

Airport classification criteria based on passenger characteristics and terminal size

Author

Listed:
  • Adikariwattage, V.
  • de Barros, Alexandre G.
  • Wirasinghe, S.C.
  • Ruwanpura, Janaka

Abstract

This paper introduces classification criteria for airports that focus on the comparability of passenger terminal facilities. The variables used to define the criteria include terminal size in terms of number of gates, passenger characteristics in terms of international/domestic passenger volumes and transfer passenger volume. The study utilizes passenger data collected from the T-100 and airport origin/destination-survey databases of the US Bureau of Transportation Statistics. Cluster analysis is used as the technique to identify similar airport groups using passenger volumes as multiple variables. Finally, a set of criteria is defined, to differentiate airports based on the variables used.

Suggested Citation

  • Adikariwattage, V. & de Barros, Alexandre G. & Wirasinghe, S.C. & Ruwanpura, Janaka, 2012. "Airport classification criteria based on passenger characteristics and terminal size," Journal of Air Transport Management, Elsevier, vol. 24(C), pages 36-41.
  • Handle: RePEc:eee:jaitra:v:24:y:2012:i:c:p:36-41
    DOI: 10.1016/j.jairtraman.2012.06.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699712000944
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2012.06.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarkis, Joseph & Talluri, Srinivas, 2004. "Performance based clustering for benchmarking of US airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(5), pages 329-346, June.
    2. Bandara, S. & Wirasinghe, S. C., 1992. "Walking distance minimization for airport terminal configurations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 26(1), pages 59-74, January.
    3. Hanaoka, Shinya & Saraswati, Batari, 2011. "Low cost airport terminal locations and configurations," Journal of Air Transport Management, Elsevier, vol. 17(5), pages 314-319.
    4. Madas, Michael A. & Zografos, Konstantinos G., 2008. "Airport capacity vs. demand: Mismatch or mismanagement?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(1), pages 203-226, January.
    5. de Barros, Alexandre G. & Wirasinghe, S. C., 2003. "Optimal terminal configurations for new large aircraft operations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(4), pages 315-331, May.
    6. Burghouwt, Guillaume & Hakfoort, Jacco, 2001. "The evolution of the European aviation network, 1990–1998," Journal of Air Transport Management, Elsevier, vol. 7(5), pages 311-318.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Jing & Meng, Yucan & Timmermans, Harry & Zhang, Anming, 2021. "Modeling hesitancy in airport choice: A comparison of discrete choice and machine learning methods," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 230-250.
    2. Paramonovs Sergejs & Ijevleva Ksenija, 2015. "Factor Analysis of Passengers’ Satisfaction at “RIGA International Airport”," Economics and Business, Sciendo, vol. 27(1), pages 46-52, August.
    3. Zeigler, Patrick & Pagliari, Romano & Suau-Sanchez, Pere & Malighetti, Paolo & Redondi, Renato, 2017. "Low-cost carrier entry at small European airports: Low-cost carrier effects on network connectivity and self-transfer potential," Journal of Transport Geography, Elsevier, vol. 60(C), pages 68-79.
    4. Vasiliy A. Anikin & Yulia P. Lezhnina & Svetlana V. Mareeva & Ekaterina D. Slobodenyuk & Nataliya N. Tikhonovà, 2016. "Income Stratification: Key Approaches and Their Application to Russia," HSE Working papers WP BRP 02/PSP/2016, National Research University Higher School of Economics.
    5. Magdalina, Ana & Bouzaima, Martin, 2021. "An empirical investigation of European airline business models: Classification and hybridisation," Journal of Air Transport Management, Elsevier, vol. 93(C).
    6. Kenneth Button, 2020. "Studying the empirical implications of the liberalization of airport markets," Competition and Regulation in Network Industries, , vol. 21(3), pages 223-243, September.
    7. Rodríguez-Déniz, Héctor & Suau-Sanchez, Pere & Voltes-Dorta, Augusto, 2013. "Classifying airports according to their hub dimensions: an application to the US domestic network," Journal of Transport Geography, Elsevier, vol. 33(C), pages 188-195.
    8. Suau-Sanchez, Pere & Voltes-Dorta, Augusto & Rodríguez-Déniz, Héctor, 2015. "Regulatory airport classification in the US: The role of international markets," Transport Policy, Elsevier, vol. 37(C), pages 157-166.
    9. Gao, Yi, 2021. "What is the busiest time at an airport? Clustering U.S. hub airports based on passenger movements," Journal of Transport Geography, Elsevier, vol. 90(C).
    10. Vogel, Hans-Arthur & Graham, Anne, 2013. "Devising airport groupings for financial benchmarking," Journal of Air Transport Management, Elsevier, vol. 30(C), pages 32-38.
    11. Mayer, Robert, 2016. "Airport classification based on cargo characteristics," Journal of Transport Geography, Elsevier, vol. 54(C), pages 53-65.
    12. Van Asch, Thomas & Dewulf, Wouter & Kupfer, Franziska & Cárdenas, Ivan & Van de Voorde, Eddy, 2020. "Cross-border e-commerce logistics – Strategic success factors for airports," Research in Transportation Economics, Elsevier, vol. 79(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodríguez-Déniz, Héctor & Suau-Sanchez, Pere & Voltes-Dorta, Augusto, 2013. "Classifying airports according to their hub dimensions: an application to the US domestic network," Journal of Transport Geography, Elsevier, vol. 33(C), pages 188-195.
    2. Vogel, Hans-Arthur & Graham, Anne, 2013. "Devising airport groupings for financial benchmarking," Journal of Air Transport Management, Elsevier, vol. 30(C), pages 32-38.
    3. Givoni, Moshe & Rietveld, Piet, 2009. "Airline's choice of aircraft size - Explanations and implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 500-510, June.
    4. Narciso, Mercedes E. & Piera, Miquel A., 2015. "Robust gate assignment procedures from an airport management perspective," Omega, Elsevier, vol. 50(C), pages 82-95.
    5. de Barros, Alexandre G. & Somasundaraswaran, A.K. & Wirasinghe, S.C., 2007. "Evaluation of level of service for transfer passengers at airports," Journal of Air Transport Management, Elsevier, vol. 13(5), pages 293-298.
    6. David Ramos-Pérez & José Luis Sánchez-Hernández, 2014. "European World Cities and the Spatial Polarisation of Air Transport Liberalisation Benefits," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 105(1), pages 1-29, February.
    7. Cavusoglu, Sabriye Sera & Macário, Rosário, 2021. "Minimum delay or maximum efficiency? Rising productivity of available capacity at airports: Review of current practice and future needs," Journal of Air Transport Management, Elsevier, vol. 90(C).
    8. George E. Halkos & Nickolaos G. Tzeremes, 2015. "Measuring Seaports' Productivity: A Malmquist Productivity Index Decomposition Approach," Journal of Transport Economics and Policy, University of Bath, vol. 49(2), pages 355-376, April.
    9. Lin, L.C. & Hong, C.H., 2006. "Operational performance evaluation of international major airports: An application of data envelopment analysis," Journal of Air Transport Management, Elsevier, vol. 12(6), pages 342-351.
    10. De Nicola, Arianna & Gitto, Simone & Mancuso, Paolo, 2013. "Airport quality and productivity changes: A Malmquist index decomposition assessment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 58(C), pages 67-75.
    11. Pacheco, Ricardo Rodrigues & Braga, Márcia Estrada & Fernandes, Elton, 2015. "Spatial concentration and connectivity of international passenger traffic at Brazilian airports," Journal of Air Transport Management, Elsevier, vol. 46(C), pages 49-55.
    12. Suau-Sanchez, Pere & Pallares-Barbera, Montserrat & Paül, Valerià, 2011. "Incorporating annoyance in airport environmental policy: noise, societal response and community participation," Journal of Transport Geography, Elsevier, vol. 19(2), pages 275-284.
    13. Dixit, Aasheesh & Jakhar, Suresh Kumar, 2021. "Airport capacity management: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 91(C).
    14. Mayer, Robert, 2016. "Airport classification based on cargo characteristics," Journal of Transport Geography, Elsevier, vol. 54(C), pages 53-65.
    15. Christopher L. Atkinson, 2020. "The Federal Aviation Administration Airport Improvement Program: Who Benefits?," Public Organization Review, Springer, vol. 20(4), pages 789-805, December.
    16. Ivanov, Nikola & Netjasov, Fedja & Jovanović, Radosav & Starita, Stefano & Strauss, Arne, 2017. "Air Traffic Flow Management slot allocation to minimize propagated delay and improve airport slot adherence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 183-197.
    17. Choo, Yap Yin & Oum, Tae Hoon, 2013. "Impacts of low cost carrier services on efficiency of the major U.S. airports," Journal of Air Transport Management, Elsevier, vol. 33(C), pages 60-67.
    18. Rodríguez-Sanz, à lvaro & Fernández de Marcos, Alberto & Pérez-Castán, Javier A. & Comendador, Fernando Gómez & Arnaldo Valdés, Rosa & París Loreiro, à ngel, 2021. "Queue behavioural patterns for passengers at airport terminals: A machine learning approach," Journal of Air Transport Management, Elsevier, vol. 90(C).
    19. Dorndorf, Ulrich & Drexl, Andreas & Nikulin, Yury & Pesch, Erwin, 2005. "Flight gate scheduling: State-of-the-art and recent developments," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 584, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    20. Gitto, Simone & Mancuso, Paolo, 2009. "Productivity change in Italian airports," MPRA Paper 34367, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:24:y:2012:i:c:p:36-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.