IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v124y2025ics096969972500002x.html
   My bibliography  Save this article

Optimization and evolution of UAV insurance provision framework: Insights into multi-sector cooperation

Author

Listed:
  • Ma, Qian

Abstract

The rapid expansion of unmanned aerial vehicles (UAVs) presents considerable challenges in risk management. Although insurance is essential for mitigating the risks associated with UAV operations, aviation insurers face major obstacles in providing effective coverage due to insufficient actuarial data, limited expertise, and regulatory uncertainties. This study aims to optimize the UAV insurance provision framework to help address the issue of inefficient coverage. Through a comparative analysis of traditional and cooperative UAV insurance provision frameworks, the study identifies multi-sector cooperation as the most effective approach. This framework involves close cooperation among aviation insurers, the government, and UAV manufacturers. To examine the stability of this framework, an evolutionary game theory model is developed, with aviation insurers and the government as the main players. Factors such as cooperative profits, cooperative costs, and the benefits of free-riding are identified as pivotal to the framework's stability. The system's sensitivity to variations in these factors is demonstrated through simulations. The study also outlines a potential evolutionary path for the UAV insurance provision framework, emphasizing a phased approach that adapts to the evolving UAV landscape. This research offers valuable insights into optimizing UAV insurance provision and provides practical guidance for aviation insurers, policymakers, and UAV manufacturers in fostering cooperative strategies that enhance the overall safety and sustainability of UAV operations.

Suggested Citation

  • Ma, Qian, 2025. "Optimization and evolution of UAV insurance provision framework: Insights into multi-sector cooperation," Journal of Air Transport Management, Elsevier, vol. 124(C).
  • Handle: RePEc:eee:jaitra:v:124:y:2025:i:c:s096969972500002x
    DOI: 10.1016/j.jairtraman.2025.102740
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096969972500002X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2025.102740?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohamed Alawadhi & Jumah Almazrouie & Mohammed Kamil & Khalil Abdelrazek Khalil, 2020. "Review and analysis of the importance of autonomous vehicles liability: a systematic literature review," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(6), pages 1227-1249, December.
    2. Yang, Hui-Hua & Chang, Yu-Hern & Lin, Chien-Hung, 2022. "A combined approach for selecting drone management strategies based on the ICAO Safety Management System (SMS) components," Journal of Air Transport Management, Elsevier, vol. 104(C).
    3. Chong Li & Yingqi Li, 2023. "Factors Influencing Public Risk Perception of Emerging Technologies: A Meta-Analysis," Sustainability, MDPI, vol. 15(5), pages 1-37, February.
    4. Sun, Xuting & Hu, Yue & Qin, Yichen & Zhang, Yuan, 2024. "Risk assessment of unmanned aerial vehicle accidents based on data-driven Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    5. Stanley Kaplan & B. John Garrick, 1981. "On The Quantitative Definition of Risk," Risk Analysis, John Wiley & Sons, vol. 1(1), pages 11-27, March.
    6. Zhong, Gang & Du, Sen & Zhang, Honghai & Zhou, Jiangying & Liu, Hao, 2024. "Demarcation method of safety separations for sUAV based on collision risk estimation," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    7. Washington, Achim & Clothier, Reece A. & Williams, Brendan P., 2017. "A Bayesian approach to system safety assessment and compliance assessment for Unmanned Aircraft Systems," Journal of Air Transport Management, Elsevier, vol. 62(C), pages 18-33.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bolbot, Victor & Bergström, Martin & Rahikainen, Marko & Valdez Banda, Osiris A., 2025. "Investigation into safety acceptance principles for autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    2. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    3. Ozgur Satici & Esra Satici, 2024. "Theoretical semi-quantitative risk assessment methodology for tunnel design and construction processes," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(7), pages 3385-3405, July.
    4. Chen, Fuzhong & Hsu, Chien-Lung & Lin, Arthur J. & Li, Haifeng, 2020. "Holding risky financial assets and subjective wellbeing: Empirical evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    5. Niël Almero Krüger & Natanya Meyer, 2021. "The Development of a Small and Medium-Sized Business Risk Management Intervention Tool," JRFM, MDPI, vol. 14(7), pages 1-14, July.
    6. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    7. Kasai, Naoya & Matsuhashi, Shigemi & Sekine, Kazuyoshi, 2013. "Accident occurrence model for the risk analysis of industrialfacilities," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 71-74.
    8. Hafize Nurgul Durmus Senyapar & Ramazan Bayindir, 2023. "The Research Agenda on Smart Grids: Foresights for Social Acceptance," Energies, MDPI, vol. 16(18), pages 1-31, September.
    9. J. C. Helton & F. J. Davis, 2002. "Illustration of Sampling‐Based Methods for Uncertainty and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 591-622, June.
    10. Michael Greenberg & Paul Lioy & Birnur Ozbas & Nancy Mantell & Sastry Isukapalli & Michael Lahr & Tayfur Altiok & Joseph Bober & Clifton Lacy & Karen Lowrie & Henry Mayer & Jennifer Rovito, 2013. "Passenger Rail Security, Planning, and Resilience: Application of Network, Plume, and Economic Simulation Models as Decision Support Tools," Risk Analysis, John Wiley & Sons, vol. 33(11), pages 1969-1986, November.
    11. Felipe Aguirre & Mohamed Sallak & Walter Schön & Fabien Belmonte, 2013. "Application of evidential networks in quantitative analysis of railway accidents," Journal of Risk and Reliability, , vol. 227(4), pages 368-384, August.
    12. Yacov Y. Haimes, 2012. "Systems‐Based Guiding Principles for Risk Modeling, Planning, Assessment, Management, and Communication," Risk Analysis, John Wiley & Sons, vol. 32(9), pages 1451-1467, September.
    13. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    14. Li, Jian & Yang, Zhao & He, Hongxia & Guo, Changzhen & Chen, Yubo & Zhang, Yong, 2024. "Risk causation analysis and prevention strategy of working fluid systems based on accident data and complex network theory," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    15. Julie E. Shortridge & Benjamin F. Zaitchik, 2018. "Characterizing climate change risks by linking robust decision frameworks and uncertain probabilistic projections," Climatic Change, Springer, vol. 151(3), pages 525-539, December.
    16. Katherine Emma Lonergan & Salvatore Francesco Greco & Giovanni Sansavini, 2023. "Ensuring/insuring resilient energy system infrastructure," Environment Systems and Decisions, Springer, vol. 43(4), pages 625-638, December.
    17. Yacov Y. Haimes, 2006. "On the Definition of Vulnerabilities in Measuring Risks to Infrastructures," Risk Analysis, John Wiley & Sons, vol. 26(2), pages 293-296, April.
    18. Angelo Panno & Annalisa Theodorou & Giuseppe Alessio Carbone & Evelina De Longis & Chiara Massullo & Gianluca Cepale & Giuseppe Carrus & Claudio Imperatori & Giovanni Sanesi, 2021. "Go Greener, Less Risk: Access to Nature Is Associated with Lower Risk Taking in Different Domains during the COVID-19 Lockdown," Sustainability, MDPI, vol. 13(19), pages 1-17, September.
    19. Peng Ye, 2022. "Remote Sensing Approaches for Meteorological Disaster Monitoring: Recent Achievements and New Challenges," IJERPH, MDPI, vol. 19(6), pages 1-28, March.
    20. Denitsa Angelova & Andrea Bigano & Francesco Bosello & Shouro Dasgupta & Silvio Giove, 2023. "Assessing systemic climate change risk by country. Reflections from the use of composite indicators," Working Papers 2023: 28, Department of Economics, University of Venice "Ca' Foscari".

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:124:y:2025:i:c:s096969972500002x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.