IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Forecasting tourist arrivals using time-varying parameter structural time series models

  • Song, Haiyan
  • Li, Gang
  • Witt, Stephen F.
  • Athanasopoulos, George

Empirical evidence has shown that seasonal patterns of tourism demand and the effects of various influencing factors on this demand tend to change over time. To forecast future tourism demand accurately requires appropriate modelling of these changes. Based on the structural time series model (STSM) and the time-varying parameter (TVP) regression approach, this study develops the causal STSM further by introducing TVP estimation of the explanatory variable coefficients, and therefore combines the merits of the STSM and TVP models. This new model, the TVP-STSM, is employed for modelling and forecasting quarterly tourist arrivals to Hong Kong from four key source markets: China, South Korea, the UK and the USA. The empirical results show that the TVP-STSM outperforms all seven competitors, including the basic and causal STSMs and the TVP model for one- to four-quarter-ahead ex post forecasts and one-quarter-ahead ex ante forecasts.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal International Journal of Forecasting.

Volume (Year): 27 (2011)
Issue (Month): 3 (July)
Pages: 855-869

in new window

Handle: RePEc:eee:intfor:v:27:y::i:3:p:855-869
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844.
  2. Gonzalez, Pilar & Moral, Paz, 1995. "An analysis of the international tourism demand in Spain," International Journal of Forecasting, Elsevier, vol. 11(2), pages 233-251, June.
  3. Rob J. Hyndman & Yeasmin Khandakar, . "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, American Statistical Association, vol. 27(i03).
  4. Witt, Stephen F. & Witt, Christine A., 1995. "Forecasting tourism demand: A review of empirical research," International Journal of Forecasting, Elsevier, vol. 11(3), pages 447-475, September.
  5. Lucas, Robert Jr, 1976. "Econometric policy evaluation: A critique," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 1(1), pages 19-46, January.
  6. Neil Shephard & Jurgen Doornik & Siem Jan Koopman, 1998. "Statistical algorithms for models in state space using SsfPack 2.2," Economics Series Working Papers 1998-W06, University of Oxford, Department of Economics.
  7. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
  8. Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543.
  9. Commandeur, Jacques J.F. & Koopman, Siem Jan, 2007. "An Introduction to State Space Time Series Analysis," OUP Catalogue, Oxford University Press, number 9780199228874.
  10. Song, Haiyan & Witt, Stephen F. & Jensen, Thomas C., 2003. "Tourism forecasting: accuracy of alternative econometric models," International Journal of Forecasting, Elsevier, vol. 19(1), pages 123-141.
  11. Imad A. Moosa, 2000. "The cyclical behaviour of prices in the U.K.: Some structural time series evidence," Empirical Economics, Springer, vol. 25(2), pages 261-278.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:27:y::i:3:p:855-869. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.