IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v89y2019icp193-212.html
   My bibliography  Save this article

Stochastic utilities with subsistence and satiation: Optimal life insurance purchase, consumption and investment

Author

Listed:
  • Ye, Jinchun

Abstract

We introduce stochastic utilities such that utility of any fixed amount of interest is a stochastic process or random variable. Also, there exist stochastic (or random) subsistence and satiation levels associated with stochastic utilities. Then, we consider optimal consumption, life insurance purchase and investment strategies to maximize the expected utility of consumption, bequest and pension with respect to stochastic utilities. We use the martingale approach to solve the optimization problem in two steps. First, we solve the optimization problem with an equality constraint which requires that the present value of consumption, bequest and pension is equal to the present value of initial wealth and income stream. Second, if the optimization problem is feasible, we obtain the explicit representations of the replicating life insurance purchase and portfolio strategies. As an application of our general results, we consider a family of stochastic utilities which have hyperbolic absolute risk aversion (HARA).

Suggested Citation

  • Ye, Jinchun, 2019. "Stochastic utilities with subsistence and satiation: Optimal life insurance purchase, consumption and investment," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 193-212.
  • Handle: RePEc:eee:insuma:v:89:y:2019:i:c:p:193-212
    DOI: 10.1016/j.insmatheco.2019.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668719304044
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2019.10.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard, Scott F., 1975. "Optimal consumption, portfolio and life insurance rules for an uncertain lived individual in a continuous time model," Journal of Financial Economics, Elsevier, vol. 2(2), pages 187-203, June.
    2. Chong, Wing Fung, 2019. "Pricing and hedging equity-linked life insurance contracts beyond the classical paradigm: The principle of equivalent forward preferences," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 93-107.
    3. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    4. Stanley R. Pliska, 1986. "A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 371-382, May.
    5. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    6. Hanqing Jin & Zuo Quan Xu & Xun Yu Zhou, 2007. "A Convex Stochastic Optimization Problem Arising from Portfolio Selection," Papers 0709.4467, arXiv.org.
    7. Ye, Jinchun, 2019. "Random distribution kernels and three types of defaultable contingent payoffs," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 198-204.
    8. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    9. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    10. Pliska, Stanley R. & Ye, Jinchun, 2007. "Optimal life insurance purchase and consumption/investment under uncertain lifetime," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1307-1319, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwak, Minsuk & Shin, Yong Hyun & Choi, U Jin, 2011. "Optimal investment and consumption decision of a family with life insurance," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 176-188, March.
    2. de Kort, J. & Vellekoop, M.H., 2017. "Existence of optimal consumption strategies in markets with longevity risk," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 107-121.
    3. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    4. Frank Seifried, 2010. "Optimal investment with deferred capital gains taxes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(1), pages 181-199, February.
    5. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    6. de-Paz, Albert & Marín-Solano, Jesús & Navas, Jorge & Roch, Oriol, 2014. "Consumption, investment and life insurance strategies with heterogeneous discounting," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 66-75.
    7. I. Duarte & Diogo Pinheiro & Alberto A. Pinto & S. R. Pliska, 2011. "Optimal life insurance purchase, consumption and investment on a financial market with multi-dimensional diffusive terms," CEMAPRE Working Papers 1102, Centre for Applied Mathematics and Economics (CEMAPRE), School of Economics and Management (ISEG), Technical University of Lisbon.
    8. Christoph Hambel & Holger Kraft & Lorenz S. Schendel & Mogens Steffensen, 2017. "Life Insurance Demand Under Health Shock Risk," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(4), pages 1171-1202, December.
    9. Chenxu Li & Olivier Scaillet & Yiwen Shen, 2020. "Wealth Effect on Portfolio Allocation in Incomplete Markets," Papers 2004.10096, arXiv.org, revised Aug 2021.
    10. L. Rüschendorf & Steven Vanduffel, 2020. "On the construction of optimal payoffs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 129-153, June.
    11. Goll, Thomas & Kallsen, Jan, 2000. "Optimal portfolios for logarithmic utility," Stochastic Processes and their Applications, Elsevier, vol. 89(1), pages 31-48, September.
    12. Alex S. L. Tse, 2020. "Dividend policy and capital structure of a defaultable firm," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 961-994, July.
    13. Hambel, Christoph, 2020. "Health shock risk, critical illness insurance, and housing services," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 111-128.
    14. Kyoung Jin Choi & Hyeng Keun Koo & Do Young Kwak, 2004. "Optimal Stopping of Active Portfolio Management," Annals of Economics and Finance, Society for AEF, vol. 5(1), pages 93-126, May.
    15. Radosław Pietrzyk & Paweł Rokita, 2015. "Stochastic goals in financial planning for a two-person household," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(1), pages 111-136, May.
    16. Mousa, A.S. & Pinheiro, D. & Pinto, A.A., 2016. "Optimal life-insurance selection and purchase within a market of several life-insurance providers," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 133-141.
    17. Jouini, Elyes, 2001. "Arbitrage and control problems in finance: A presentation," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 167-183, April.
    18. Zhu, Huiming & Deng, Chao & Yue, Shengjie & Deng, Yingchun, 2015. "Optimal reinsurance and investment problem for an insurer with counterparty risk," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 242-254.
    19. Lioui, Abraham & Poncet, Patrice, 2003. "International asset allocation: A new perspective," Journal of Banking & Finance, Elsevier, vol. 27(11), pages 2203-2230, November.
    20. Curatola, Giuliano, 2016. "Optimal consumption and portfolio choice with loss aversion," SAFE Working Paper Series 130, Leibniz Institute for Financial Research SAFE.

    More about this item

    Keywords

    Stochastic utilities; Subsistence and satiation levels; Balance equation; Martingale method; Backward stochastic differential equations; Replicating life insurance purchase and portfolio strategies;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D11 - Microeconomics - - Household Behavior - - - Consumer Economics: Theory
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:89:y:2019:i:c:p:193-212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.