IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v49y2011i3p462-470.html
   My bibliography  Save this article

One-year Value-at-Risk for longevity and mortality

Author

Listed:
  • Plat, Richard

Abstract

Upcoming new regulation on regulatory required solvency capital for insurers will be predominantly based on a one-year Value-at-Risk measure. This measure aims at covering the risk of the variation in the projection year as well as the risk of changes in the best estimate projection for future years. This paper addresses the issue how to determine this Value-at-Risk for longevity and mortality risk. Naturally, this requires stochastic mortality rates. In the past decennium, a vast literature on stochastic mortality models has been developed. However, very few of them are suitable for determining the one-year Value-at-Risk. This requires a model for mortality trends instead of mortality rates. Therefore, we will introduce a stochastic mortality trend model that fits this purpose. The model is transparent, easy to interpret and based on well known concepts in stochastic mortality modeling. Additionally, we introduce an approximation method based on duration and convexity concepts to apply the stochastic mortality rates to specific insurance portfolios.

Suggested Citation

  • Plat, Richard, 2011. "One-year Value-at-Risk for longevity and mortality," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 462-470.
  • Handle: RePEc:eee:insuma:v:49:y:2011:i:3:p:462-470 DOI: 10.1016/j.insmatheco.2011.07.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668711000795
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dahl, Mikkel, 2004. "Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 113-136, August.
    2. Plat, Richard, 2009. "On stochastic mortality modeling," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 393-404, December.
    3. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Pricing Death: Frameworks for the Valuation and Securitization of Mortality Risk," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 36(01), pages 79-120, May.
    4. Renshaw, A.E. & Haberman, S., 2006. "A cohort-based extension to the Lee-Carter model for mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 556-570, June.
    5. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2006. "A Two-Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 687-718.
    6. Bauer Daniel & Börger Matthias & Ruß Jochen & Zwiesler Hans-Joachim, 2008. "The Volatility of Mortality," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 3(1), pages 1-29, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yanxin & Li, Johnny Siu-Hang, 2016. "It’s all in the hidden states: A longevity hedging strategy with an explicit measure of population basis risk," Insurance: Mathematics and Economics, Elsevier, pages 301-319.
    2. Lin, Tzuling & Tsai, Cary Chi-Liang, 2013. "On the mortality/longevity risk hedging with mortality immunization," Insurance: Mathematics and Economics, Elsevier, pages 580-596.
    3. Lin, Tzuling & Wang, Chou-Wen & Tsai, Cary Chi-Liang, 2015. "Age-specific copula-AR-GARCH mortality models," Insurance: Mathematics and Economics, Elsevier, pages 110-124.
    4. Boonen, Tim J. & De Waegenaere, Anja & Norde, Henk, 2017. "Redistribution of longevity risk: The effect of heterogeneous mortality beliefs," Insurance: Mathematics and Economics, Elsevier, pages 175-188.
    5. Li, Hong & De Waegenaere, Anja & Melenberg, Bertrand, 2015. "The choice of sample size for mortality forecasting: A Bayesian learning approach," Insurance: Mathematics and Economics, Elsevier, pages 153-168.

    More about this item

    Keywords

    One-year Value-at-Risk; Stochastic mortality trend model; Solvency 2;

    JEL classification:

    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • G23 - Financial Economics - - Financial Institutions and Services - - - Non-bank Financial Institutions; Financial Instruments; Institutional Investors
    • J11 - Labor and Demographic Economics - - Demographic Economics - - - Demographic Trends, Macroeconomic Effects, and Forecasts

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:49:y:2011:i:3:p:462-470. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.