IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v48y2011i1p19-28.html
   My bibliography  Save this article

Risk models based on time series for count random variables

Author

Listed:
  • Cossette, Hélène
  • Marceau, Étienne
  • Toureille, Florent

Abstract

In this paper, we generalize the classical discrete time risk model by introducing a dependence relationship in time between the claim frequencies. The models used are the Poisson autoregressive model and the Poisson moving average model. In particular, the aggregate claim amount and related quantities such as the stop-loss premium, value at risk and tail value at risk are discussed within this framework.

Suggested Citation

  • Cossette, Hélène & Marceau, Étienne & Toureille, Florent, 2011. "Risk models based on time series for count random variables," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 19-28, January.
  • Handle: RePEc:eee:insuma:v:48:y:2011:i:1:p:19-28
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(10)00098-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Promislow, S. David, 1991. "The probability of ruin in a process with dependent increments," Insurance: Mathematics and Economics, Elsevier, vol. 10(2), pages 99-107, July.
    2. Gordon Willmot & Jae-Kyung Woo, 2007. "On the Class of Erlang Mixtures with Risk Theoretic Applications," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(2), pages 99-115.
    3. Gerber, Hans U., 1982. "Ruin theory in the linear model," Insurance: Mathematics and Economics, Elsevier, vol. 1(3), pages 213-217, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boris Aleksandrov & Christian H. Weiß, 2020. "Parameter estimation and diagnostic tests for INMA(1) processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 196-232, March.
    2. Xiang Hu & Lianzeng Zhang, 2016. "Ruin Probability in a Correlated Aggregate Claims Model with Common Poisson Shocks: Application to Reinsurance," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 675-689, September.
    3. Zhao, Xiaobing & Zhou, Xian, 2012. "Copula models for insurance claim numbers with excess zeros and time-dependence," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 191-199.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albrecher Hansjörg & Kantor Josef, 2002. "Simulation of ruin probabilities for risk processes of Markovian type," Monte Carlo Methods and Applications, De Gruyter, vol. 8(2), pages 111-128, December.
    2. Zhang, Zhiqiang & Yuen, Kam C. & Li, Wai Keung, 2007. "A time-series risk model with constant interest for dependent classes of business," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 32-40, July.
    3. Barbe, Ph. & McCormick, W.P., 2010. "An extension of a logarithmic form of Cramér's ruin theorem to some FARIMA and related processes," Stochastic Processes and their Applications, Elsevier, vol. 120(6), pages 801-828, June.
    4. Christ, Ralf & Steinebach, Josef, 1995. "Estimating the adjustment coefficient in an ARMA(p, q) risk model," Insurance: Mathematics and Economics, Elsevier, vol. 17(2), pages 149-161, October.
    5. Muller, Alfred & Pflug, Georg, 2001. "Asymptotic ruin probabilities for risk processes with dependent increments," Insurance: Mathematics and Economics, Elsevier, vol. 28(3), pages 381-392, June.
    6. Reynkens, Tom & Verbelen, Roel & Beirlant, Jan & Antonio, Katrien, 2017. "Modelling censored losses using splicing: A global fit strategy with mixed Erlang and extreme value distributions," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 65-77.
    7. Jing Wang & Zbigniew Palmowski & Corina Constantinescu, 2021. "How Much We Gain by Surplus-Dependent Premiums—Asymptotic Analysis of Ruin Probability," Risks, MDPI, vol. 9(9), pages 1-17, August.
    8. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2023. "Risk aggregation with FGM copulas," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 102-120.
    9. Dickson, David C.M. & Li, Shuanming, 2010. "Finite time ruin problems for the Erlang(2) risk model," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 12-18, February.
    10. Borovkov, Konstantin A. & Dickson, David C.M., 2008. "On the ruin time distribution for a Sparre Andersen process with exponential claim sizes," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1104-1108, June.
    11. Phung Duy Quang, 2017. "Upper Bounds for Ruin Probability in a Controlled Risk Process under Rates of Interest with Homogenous Markov Chains," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 6(3), pages 1-4.
    12. David Landriault & Jean-François Renaud & Xiaowen Zhou, 2014. "An Insurance Risk Model with Parisian Implementation Delays," Methodology and Computing in Applied Probability, Springer, vol. 16(3), pages 583-607, September.
    13. David J. Santana & Juan González-Hernández & Luis Rincón, 2017. "Approximation of the Ultimate Ruin Probability in the Classical Risk Model Using Erlang Mixtures," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 775-798, September.
    14. Cossette, Hélène & Mailhot, Mélina & Marceau, Étienne, 2012. "TVaR-based capital allocation for multivariate compound distributions with positive continuous claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 50(2), pages 247-256.
    15. Bae, Taehan & Miljkovic, Tatjana, 2024. "Loss modeling with the size-biased lognormal mixture and the entropy regularized EM algorithm," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 182-195.
    16. Luis Rincón & David J. Santana, 2022. "Ruin Probability for Finite Erlang Mixture Claims Via Recurrence Sequences," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2213-2236, September.
    17. Cossette, Hélène & Marceau, Etienne & Mtalai, Itre, 2019. "Collective risk models with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 153-168.
    18. Araichi, Sawssen & Peretti, Christian de & Belkacem, Lotfi, 2016. "Solvency capital requirement for a temporal dependent losses in insurance," Economic Modelling, Elsevier, vol. 58(C), pages 588-598.
    19. Willmot, Gordon E. & Woo, Jae-Kyung, 2022. "Remarks on a generalized inverse Gaussian type integral with applications," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    20. H'el`ene Cossette & Etienne Marceau & Alessandro Mutti & Patrizia Semeraro, 2024. "Generalized FGM dependence: Geometrical representation and convex bounds on sums," Papers 2406.10648, arXiv.org, revised Oct 2024.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:48:y:2011:i:1:p:19-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.