IDEAS home Printed from https://ideas.repec.org/a/eee/ininma/v36y2016i6p1231-1247.html
   My bibliography  Save this article

Big data: From beginning to future

Author

Listed:
  • Yaqoob, Ibrar
  • Hashem, Ibrahim Abaker Targio
  • Gani, Abdullah
  • Mokhtar, Salimah
  • Ahmed, Ejaz
  • Anuar, Nor Badrul
  • Vasilakos, Athanasios V.

Abstract

Big data is a potential research area receiving considerable attention from academia and IT communities. In the digital world, the amounts of data generated and stored have expanded within a short period of time. Consequently, this fast growing rate of data has created many challenges. In this paper, we use structuralism and functionalism paradigms to analyze the origins of big data applications and its current trends. This paper presents a comprehensive discussion on state-of-the-art big data technologies based on batch and stream data processing. Moreover, strengths and weaknesses of these technologies are analyzed. This study also discusses big data analytics techniques, processing methods, some reported case studies from different vendors, several open research challenges, and the opportunities brought about by big data. The similarities and differences of these techniques and technologies based on important parameters are also investigated. Emerging technologies are recommended as a solution for big data problems.

Suggested Citation

  • Yaqoob, Ibrar & Hashem, Ibrahim Abaker Targio & Gani, Abdullah & Mokhtar, Salimah & Ahmed, Ejaz & Anuar, Nor Badrul & Vasilakos, Athanasios V., 2016. "Big data: From beginning to future," International Journal of Information Management, Elsevier, vol. 36(6), pages 1231-1247.
  • Handle: RePEc:eee:ininma:v:36:y:2016:i:6:p:1231-1247
    DOI: 10.1016/j.ijinfomgt.2016.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0268401216304753
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijinfomgt.2016.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Gandomi, Amir & Haider, Murtaza, 2015. "Beyond the hype: Big data concepts, methods, and analytics," International Journal of Information Management, Elsevier, vol. 35(2), pages 137-144.
    2. Hashem, Ibrahim Abaker Targio & Chang, Victor & Anuar, Nor Badrul & Adewole, Kayode & Yaqoob, Ibrar & Gani, Abdullah & Ahmed, Ejaz & Chiroma, Haruna, 2016. "The role of big data in smart city," International Journal of Information Management, Elsevier, vol. 36(5), pages 748-758.
    3. Kwon, Ohbyung & Lee, Namyeon & Shin, Bongsik, 2014. "Data quality management, data usage experience and acquisition intention of big data analytics," International Journal of Information Management, Elsevier, vol. 34(3), pages 387-394.
    4. Tim Berners-Lee & James Hendler, 2001. "Publishing on the semantic web," Nature, Nature, vol. 410(6832), pages 1023-1024, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Camargo Fiorini, Paula & Roman Pais Seles, Bruno Michel & Chiappetta Jabbour, Charbel Jose & Barberio Mariano, Enzo & de Sousa Jabbour, Ana Beatriz Lopes, 2018. "Management theory and big data literature: From a review to a research agenda," International Journal of Information Management, Elsevier, vol. 43(C), pages 112-129.
    2. Gupta, Shivam & Kar, Arpan Kumar & Baabdullah, Abdullah & Al-Khowaiter, Wassan A.A., 2018. "Big data with cognitive computing: A review for the future," International Journal of Information Management, Elsevier, vol. 42(C), pages 78-89.
    3. Francesco Cappa & Stefano Franco & Federica Rosso, 2022. "Citizens and cities: Leveraging citizen science and big data for sustainable urban development," Business Strategy and the Environment, Wiley Blackwell, vol. 31(2), pages 648-667, February.
    4. Ashrafi, Amir & Zare Ravasan, Ahad & Trkman, Peter & Afshari, Samira, 2019. "The role of business analytics capabilities in bolstering firms’ agility and performance," International Journal of Information Management, Elsevier, vol. 47(C), pages 1-15.
    5. Ioannis N. Theotokas & Ioannis N. Lagoudis & Konstantina Raftopoulou, 2024. "Challenges of maritime human resource management for the transition to shipping digitalization," Journal of Shipping and Trade, Springer, vol. 9(1), pages 1-23, December.
    6. Meng Wang & Yalin Qin & Jiaojiao Liu & Weidong Li, 2023. "Identifying personal physiological data risks to the Internet of Everything: the case of facial data breach risks," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-15, December.
    7. Maryia Zaitsava & Elona Marku & Maria Chiara Guardo & Azar Shahgholian, 2023. "A fine-grained perspective on big data knowledge creation: dimensions, insights, and mechanism from a pilot study," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 27(2), pages 547-573, June.
    8. Ariyaluran Habeeb, Riyaz Ahamed & Nasaruddin, Fariza & Gani, Abdullah & Targio Hashem, Ibrahim Abaker & Ahmed, Ejaz & Imran, Muhammad, 2019. "Real-time big data processing for anomaly detection: A Survey," International Journal of Information Management, Elsevier, vol. 45(C), pages 289-307.
    9. Lim, Chiehyeon & Kim, Ki-Hun & Kim, Min-Jun & Heo, Jun-Yeon & Kim, Kwang-Jae & Maglio, Paul P., 2018. "From data to value: A nine-factor framework for data-based value creation in information-intensive services," International Journal of Information Management, Elsevier, vol. 39(C), pages 121-135.
    10. Richly, Marc A., 2022. "Big Data Analytics Capabilities: A Systematic Literature Review on Necessary Skills to Succeed in Big Data Analytics," Junior Management Science (JUMS), Junior Management Science e. V., vol. 7(5), pages 1224-1241.
    11. Calvard, Thomas Stephen & Jeske, Debora, 2018. "Developing human resource data risk management in the age of big data," International Journal of Information Management, Elsevier, vol. 43(C), pages 159-164.
    12. Harkaran Kava & Konstantina Spanaki & Thanos Papadopoulos & Stella Despoudi & Oscar Rodriguez-Espindola & Masoud Fakhimi, 2024. "Data analytics diffusion in the UK renewable energy sector: an innovation perspective," Annals of Operations Research, Springer, vol. 333(2), pages 717-742, February.
    13. Mingle Zhou & Yu Wang & Xiaohui Huang & Gang Li, 2023. "Can open government data policy improve firm performance? Evidence from listed firms in China," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(5), pages 2593-2603, July.
    14. Julia Eichholz & Thorsten Knauer & Sandra Winkelmann, 2023. "Digital Maturity of Forecasting and its Impact in Times of Crisis," Schmalenbach Journal of Business Research, Springer, vol. 75(4), pages 443-481, December.
    15. Ahmad Ibrahim Aljumah & Mohammed T. Nuseir & Md. Mahmudul Alam, 2021. "Traditional marketing analytics, big data analytics and big data system quality and the success of new product development," Post-Print hal-03538161, HAL.
    16. Cano-Marin, Enrique & Mora-Cantallops, Marçal & Sánchez-Alonso, Salvador, 2023. "Twitter as a predictive system: A systematic literature review," Journal of Business Research, Elsevier, vol. 157(C).
    17. Amiri, Babak & Karimianghadim, Ramin, 2024. "A novel text clustering model based on topic modelling and social network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    18. Lutfi, Abdalwali & Alrawad, Mahmaod & Alsyouf, Adi & Almaiah, Mohammed Amin & Al-Khasawneh, Ahmad & Al-Khasawneh, Akif Lutfi & Alshira'h, Ahmad Farhan & Alshirah, Malek Hamed & Saad, Mohamed & Ibrahim, 2023. "Drivers and impact of big data analytic adoption in the retail industry: A quantitative investigation applying structural equation modeling," Journal of Retailing and Consumer Services, Elsevier, vol. 70(C).
    19. Lu Han & Hanping Hou & Z. M. Bi & Jianliang Yang & Xiaoxiao Zheng, 2024. "Functional Requirements and Supply Chain Digitalization in Industry 4.0," Information Systems Frontiers, Springer, vol. 26(6), pages 2273-2285, December.
    20. Lismont, Jasmien & Vanthienen, Jan & Baesens, Bart & Lemahieu, Wilfried, 2017. "Defining analytics maturity indicators: A survey approach," International Journal of Information Management, Elsevier, vol. 37(3), pages 114-124.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ininma:v:36:y:2016:i:6:p:1231-1247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-information-management .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.