IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v10y2016i2p634-644.html
   My bibliography  Save this article

Opinion polarity detection in Twitter data combining shrinkage regression and topic modeling

Author

Listed:
  • Yoon, Hyui Geon
  • Kim, Hyungjun
  • Kim, Chang Ouk
  • Song, Min

Abstract

We propose a method to analyze public opinion about political issues online by automatically detecting polarity in Twitter data. Previous studies have focused on the polarity classification of individual tweets. However, to understand the direction of public opinion on a political issue, it is important to analyze the degree of polarity on the major topics at the center of the discussion in addition to the individual tweets. The first stage of the proposed method detects polarity in tweets using the Lasso and Ridge models of shrinkage regression. The models are beneficial in that the regression results provide sentiment scores for the terms that appear in tweets. The second stage identifies the major topics via a latent Dirichlet analysis (LDA) topic model and estimates the degree of polarity on the LDA topics using term sentiment scores. To the best of our knowledge, our study is the first to predict the polarities of public opinion on topics in this manner. We conducted an experiment on a mayoral election in Seoul, South Korea and compared the total detection accuracy of the regression models with five support vector machine (SVM) models with different numbers of input terms selected by a feature selection algorithm. The results indicated that the performance of the Ridge model was approximately 7% higher on average than that of the SVM models. Additionally, the degree of polarity on the LDA topics estimated using the proposed method was compared with actual public opinion responses. The results showed that the polarity detection accuracy of the Lasso model was 83%, indicating that the proposed method was valid in most cases.

Suggested Citation

  • Yoon, Hyui Geon & Kim, Hyungjun & Kim, Chang Ouk & Song, Min, 2016. "Opinion polarity detection in Twitter data combining shrinkage regression and topic modeling," Journal of Informetrics, Elsevier, vol. 10(2), pages 634-644.
  • Handle: RePEc:eee:infome:v:10:y:2016:i:2:p:634-644
    DOI: 10.1016/j.joi.2016.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157715301012
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2016.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bernard J. Jansen & Mimi Zhang & Kate Sobel & Abdur Chowdury, 2009. "Twitter power: Tweets as electronic word of mouth," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(11), pages 2169-2188, November.
    2. Lukas Meier & Sara Van De Geer & Peter Bühlmann, 2008. "The group lasso for logistic regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 53-71, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alekh Gour & Shikha Aggarwal & Subodha Kumar, 2022. "Lending ears to unheard voices: An empirical analysis of user‐generated content on social media," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2457-2476, June.
    2. Shr-Wei Kao & Pin Luarn, 2020. "Topic Modeling Analysis of Social Enterprises: Twitter Evidence," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    3. Ciprian-Octavian Truică & Elena-Simona Apostol & Maria-Luiza Șerban & Adrian Paschke, 2021. "Topic-Based Document-Level Sentiment Analysis Using Contextual Cues," Mathematics, MDPI, vol. 9(21), pages 1-23, October.
    4. Suvodeep Mazumdar & Dhavalkumar Thakker, 2020. "Citizen Science on Twitter: Using Data Analytics to Understand Conversations and Networks," Future Internet, MDPI, vol. 12(12), pages 1-22, November.
    5. Meng Cai & Han Luo & Xiao Meng & Ying Cui & Wei Wang, 2022. "Influence of information attributes on information dissemination in public health emergencies," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-22, December.
    6. Ficcadenti, Valerio & Cerqueti, Roy & Ausloos, Marcel & Dhesi, Gurjeet, 2020. "Words ranking and Hirsch index for identifying the core of the hapaxes in political texts," Journal of Informetrics, Elsevier, vol. 14(3).
    7. Dogan, Turgut & Uysal, Alper Kursat, 2020. "A novel term weighting scheme for text classification: TF-MONO," Journal of Informetrics, Elsevier, vol. 14(4).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Xuan Yang & Xiao Li & Daning Hu & Harry Jiannan Wang, 2021. "Differential impacts of social influence on initial and sustained participation in open source software projects," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(9), pages 1133-1147, September.
    3. Langley, David J. & Hoeve, Maarten C. & Ortt, J. Roland & Pals, Nico & van der Vecht, Bob, 2014. "Patterns of Herding and their Occurrence in an Online Setting," Journal of Interactive Marketing, Elsevier, vol. 28(1), pages 16-25.
    4. repec:jss:jstsof:33:i01 is not listed on IDEAS
    5. Bilin Zeng & Xuerong Meggie Wen & Lixing Zhu, 2017. "A link-free sparse group variable selection method for single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2388-2400, October.
    6. Olga Klopp & Marianna Pensky, 2013. "Sparse High-dimensional Varying Coefficient Model : Non-asymptotic Minimax Study," Working Papers 2013-30, Center for Research in Economics and Statistics.
    7. Li, Peili & Jiao, Yuling & Lu, Xiliang & Kang, Lican, 2022. "A data-driven line search rule for support recovery in high-dimensional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    8. Osamu Komori & Shinto Eguchi & John B. Copas, 2015. "Generalized t-statistic for two-group classification," Biometrics, The International Biometric Society, vol. 71(2), pages 404-416, June.
    9. Luu, Tung Duy & Fadili, Jalal & Chesneau, Christophe, 2019. "PAC-Bayesian risk bounds for group-analysis sparse regression by exponential weighting," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 209-233.
    10. Li, Xin & Xie, Qianqian & Jiang, Jiaojiao & Zhou, Yuan & Huang, Lucheng, 2019. "Identifying and monitoring the development trends of emerging technologies using patent analysis and Twitter data mining: The case of perovskite solar cell technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 687-705.
    11. Yang, Yanlin & Hu, Xuemei & Jiang, Huifeng, 2022. "Group penalized logistic regressions predict up and down trends for stock prices," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    12. Lee, In Gyu & Yoon, Sang Won & Won, Daehan, 2022. "A Mixed Integer Linear Programming Support Vector Machine for Cost-Effective Group Feature Selection: Branch-Cut-and-Price Approach," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1055-1068.
    13. Ruidi Chen & Ioannis Ch. Paschalidis, 2022. "Robust Grouped Variable Selection Using Distributionally Robust Optimization," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 1042-1071, September.
    14. Shu-Hsun Ho & Yu-Ling Lin & Robert Carlson Patrick, 2015. "Participant Motivations In A Social Media Community Page," Global Journal of Business Research, The Institute for Business and Finance Research, vol. 9(4), pages 67-75.
    15. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    16. Hamsa Bastani, 2021. "Predicting with Proxies: Transfer Learning in High Dimension," Management Science, INFORMS, vol. 67(5), pages 2964-2984, May.
    17. Zanhua Yin, 2020. "Variable selection for sparse logistic regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 821-836, October.
    18. Pablo Gomez‐Carrasco & Giovanna Michelon, 2017. "The Power of Stakeholders' Voice: The Effects of Social Media Activism on Stock Markets," Business Strategy and the Environment, Wiley Blackwell, vol. 26(6), pages 855-872, September.
    19. A. Karagrigoriou & C. Koukouvinos & K. Mylona, 2010. "On the advantages of the non-concave penalized likelihood model selection method with minimum prediction errors in large-scale medical studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(1), pages 13-24.
    20. Liu, Jianyu & Yu, Guan & Liu, Yufeng, 2019. "Graph-based sparse linear discriminant analysis for high-dimensional classification," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 250-269.
    21. Shota Yamanaka & Nobuo Yamashita, 2018. "Duality of nonconvex optimization with positively homogeneous functions," Computational Optimization and Applications, Springer, vol. 71(2), pages 435-456, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:10:y:2016:i:2:p:634-644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.