IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v34y2021ics1874548221000263.html
   My bibliography  Save this article

Nodal vulnerability assessment of water distribution networks: An integrated Fuzzy AHP-TOPSIS approach

Author

Listed:
  • Tornyeviadzi, Hoese Michel
  • Neba, Fabrice Abunde
  • Mohammed, Hadi
  • Seidu, Razak

Abstract

Water Distribution Networks (WDNs) ensure reliable water supply to consumers which depends largely on joint and well-coordinated functioning of all diverse facets and components of the WDN. Failure of a vital component has catastrophic consequences and could impair the overall performance of the distribution system. This study presents an integrated Fuzzy AHP-TOPSIS framework that couples selected topological, hydraulic and water quality parameters to holistically assess nodal vulnerability of WDNs even under conflicting priority ranking of the methods considered. Within this framework, we harmonize the unique strengths of Closeness Centrality, Demand Adjusted Closeness Centrality and a Water Quality Index to accurately characterize the vulnerability of demand nodes. The proposed framework is validated on two case studies. The results indicate the ability of the integrated framework to accurately rank demand nodes, differentiate between nodes with the same base demand and distinguish between sink nodes based on water quality. The vulnerability indexes presented by the framework cannot be exhaustively explained by any of the original methods, an indication that the integrated framework provides new information in vulnerability analysis of WDNs. The framework could serve as a tool for water engineers in the analysis of critical nodes, scheduling of maintenance strategies and the assessment of failure impact on water distribution networks.

Suggested Citation

  • Tornyeviadzi, Hoese Michel & Neba, Fabrice Abunde & Mohammed, Hadi & Seidu, Razak, 2021. "Nodal vulnerability assessment of water distribution networks: An integrated Fuzzy AHP-TOPSIS approach," International Journal of Critical Infrastructure Protection, Elsevier, vol. 34(C).
  • Handle: RePEc:eee:ijocip:v:34:y:2021:i:c:s1874548221000263
    DOI: 10.1016/j.ijcip.2021.100434
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548221000263
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2021.100434?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shuang, Qing & Zhang, Mingyuan & Yuan, Yongbo, 2014. "Node vulnerability of water distribution networks under cascading failures," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 132-141.
    2. TAVANA, Madjid & HATAMI-MARBINI, Adel, 2011. "A group AHP-TOPSIS framework for human spaceflight mission planning at NASA," LIDAM Reprints CORE 2362, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Agathoklis Agathokleous & Chrystalleni Christodoulou & Symeon E. Christodoulou, 2017. "Topological Robustness and Vulnerability Assessment of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 4007-4021, September.
    4. Jorge Pinto & Humberto Varum & Isabel Bentes & Jitendra Agarwal, 2010. "A Theory of Vulnerability of Water Pipe Network (TVWPN)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4237-4254, December.
    5. Faramondi, Luca & Oliva, Gabriele & Setola, Roberto, 2020. "Multi-criteria node criticality assessment framework for critical infrastructure networks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 28(C).
    6. Wang, Fei & Zheng, Xia-zhong & Li, Nan & Shen, Xuesong, 2019. "Systemic vulnerability assessment of urban water distribution networks considering failure scenario uncertainty," International Journal of Critical Infrastructure Protection, Elsevier, vol. 26(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. E. Ahila Devi & S. Radhika & A. Chandrasekar, 2023. "An energy-efficient MANET relay node selection and routing using a fuzzy-based analytic hierarchy process," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 83(2), pages 209-226, June.
    2. Richárd Wéber & Tamás Huzsvár & Ákos Déllei & Csaba Hős, 2023. "Criticality of Isolation Valves in Water Distribution Networks with Hydraulics and Topology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2181-2193, March.
    3. Balali, Amirhossein & Yunusa-Kaltungo, Akilu & Edwards, Rodger, 2023. "A systematic review of passive energy consumption optimisation strategy selection for buildings through multiple criteria decision-making techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tornyeviadzi, Hoese Michel & Owusu-Ansah, Emmanuel & Mohammed, Hadi & Seidu, Razak, 2022. "A systematic framework for dynamic nodal vulnerability assessment of water distribution networks based on multilayer networks," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Wang, Fei & Zheng, Xia-zhong & Li, Nan & Shen, Xuesong, 2019. "Systemic vulnerability assessment of urban water distribution networks considering failure scenario uncertainty," International Journal of Critical Infrastructure Protection, Elsevier, vol. 26(C).
    3. Agathoklis Agathokleous & Chrystalleni Christodoulou & Symeon E. Christodoulou, 2017. "Topological Robustness and Vulnerability Assessment of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 4007-4021, September.
    4. Chi Zhang & Yuntao Wang & Yu Li & Wei Ding, 2017. "Vulnerability Analysis of Urban Drainage Systems: Tree vs. Loop Networks," Sustainability, MDPI, vol. 9(3), pages 1-18, March.
    5. Xiang He & Yongbo Yuan, 2019. "A Framework of Identifying Critical Water Distribution Pipelines from Recovery Resilience," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3691-3706, September.
    6. C. Giudicianni & A. Nardo & R. Greco & A. Scala, 2021. "A Community-Structure-Based Method for Estimating the Fractal Dimension, and its Application to Water Networks for the Assessment of Vulnerability to Disasters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1197-1210, March.
    7. Wu, Yipeng & Chen, Zhilong & Gong, Huadong & Feng, Qilin & Chen, Yicun & Tang, Haizhou, 2021. "Defender–attacker–operator: Tri-level game-theoretic interdiction analysis of urban water distribution networks," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    8. A. Simone & C. Di Cristo & O. Giustolisi, 2022. "Analysis of the isolation valve system in water distribution networks using the segment graph," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3561-3574, August.
    9. Yu, Jin-Zhu & Whitman, Mackenzie & Kermanshah, Amirhassan & Baroud, Hiba, 2021. "A hierarchical Bayesian approach for assessing infrastructure networks serviceability under uncertainty: A case study of water distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Bistouni, Fathollah & Jahanshahi, Mohsen, 2015. "Evaluating failure rate of fault-tolerant multistage interconnection networks using Weibull life distribution," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 128-146.
    11. Carayannis, Elias G. & Goletsis, Yorgos & Grigoroudis, Evangelos, 2018. "Composite innovation metrics: MCDA and the Quadruple Innovation Helix framework," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 4-17.
    12. Augutis, Juozas & Jokšas, Benas & Krikštolaitis, Ričardas & Urbonas, Rolandas, 2016. "The assessment technology of energy critical infrastructure," Applied Energy, Elsevier, vol. 162(C), pages 1494-1504.
    13. Zahra Pouri & Morteza Heidarimozaffar, 2022. "Spatial Analysis and Failure Management in Water Distribution Networks Using Fuzzy Inference System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1783-1797, April.
    14. Xi Hu & Jim W. Hall & Peijun Shi & Wee Ho Lim, 2016. "The spatial exposure of the Chinese infrastructure system to flooding and drought hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1083-1118, January.
    15. Kuei-Hu Chang & Yung-Chia Chang & Kai Chain & Hsiang-Yu Chung, 2016. "Integrating Soft Set Theory and Fuzzy Linguistic Model to Evaluate the Performance of Training Simulation Systems," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-29, September.
    16. Miguel Angel Ortiz Barrios & Fabio De Felice & Kevin Parra Negrete & Brandon Aleman Romero & Adriana Yaruro Arenas & Antonella Petrillo, 2016. "An AHP-Topsis Integrated Model for Selecting the Most Appropriate Tomography Equipment," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 861-885, July.
    17. Caldarola, Fabio & Maiolo, Mario, 2021. "A mathematical investigation on the invariance problem of some hydraulic indices," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    18. Hojatollah Khedrigharibvand & Hossein Azadi & Dereje Teklemariam & Ehsan Houshyar & Philippe Maeyer & Frank Witlox, 2019. "Livelihood alternatives model for sustainable rangeland management: a review of multi-criteria decision-making techniques," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(1), pages 11-36, February.
    19. Robles-Velasco, Alicia & Cortés, Pablo & Muñuzuri, Jesús & Onieva, Luis, 2020. "Prediction of pipe failures in water supply networks using logistic regression and support vector classification," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    20. Ebrahimnejad, Ali & Tavana, Madjid & Santos-Arteaga, Francisco J., 2016. "An integrated data envelopment analysis and simulation method for group consensus ranking," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 119(C), pages 1-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:34:y:2021:i:c:s1874548221000263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.