IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v90y2015ip2p1878-1886.html
   My bibliography  Save this article

Experimental analysis of the spectral factor for quantifying the spectral influence on concentrator photovoltaic systems under real operating conditions

Author

Listed:
  • Fernández, Eduardo F.
  • Almonacid, Florencia
  • Soria-Moya, Alberto
  • Terrados, Julio

Abstract

The spectral dependence of concentrator photovoltaic devices shows a larger and more complex behaviour than conventional photovoltaic devices due to the use of multi-junction solar cells and optical elements. The spectral factor is a widely used index for evaluating the spectral influence on the performance of conventional photovoltaics in outdoors. However, the experimental analysis of this index as a tool to evaluate the spectral influence on the performance of concentrator devices has not been undertaken and still remains unknown. The aim of this paper is to analyse the spectral factor as an index for estimating the spectral influence on the power and energy output of concentrator photovoltaic systems. The final goal is to contribute to the development of new procedures for predicting the performance of this technology under real operating conditions. To achieve this goal, two concentrator modules have been monitored over the course of two years in Southern Spain. Results show that the spectral factor has a larger and different spectral sensitivity than the power output. However, this index can be used as a good first approximation for quantifying the spectral influence on the maximum power and energy yield of a concentrator photovoltaic system under real operating conditions.

Suggested Citation

  • Fernández, Eduardo F. & Almonacid, Florencia & Soria-Moya, Alberto & Terrados, Julio, 2015. "Experimental analysis of the spectral factor for quantifying the spectral influence on concentrator photovoltaic systems under real operating conditions," Energy, Elsevier, vol. 90(P2), pages 1878-1886.
  • Handle: RePEc:eee:energy:v:90:y:2015:i:p2:p:1878-1886
    DOI: 10.1016/j.energy.2015.07.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215009093
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.07.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pérez-Higueras, P. & Muñoz, E. & Almonacid, G. & Vidal, P.G., 2011. "High Concentrator PhotoVoltaics efficiencies: Present status and forecast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1810-1815, May.
    2. Fernández, Eduardo F. & Almonacid, Florencia, 2014. "Spectrally corrected direct normal irradiance based on artificial neural networks for high concentrator photovoltaic applications," Energy, Elsevier, vol. 74(C), pages 941-949.
    3. Alonso-Abella, M. & Chenlo, F. & Nofuentes, G. & Torres-Ramírez, M., 2014. "Analysis of spectral effects on the energy yield of different PV (photovoltaic) technologies: The case of four specific sites," Energy, Elsevier, vol. 67(C), pages 435-443.
    4. Rodrigo, P. & Fernández, E.F. & Almonacid, F. & Pérez-Higueras, P.J., 2014. "Review of methods for the calculation of cell temperature in high concentration photovoltaic modules for electrical characterization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 478-488.
    5. Nofuentes, G. & García-Domingo, B. & Muñoz, J.V. & Chenlo, F., 2014. "Analysis of the dependence of the spectral factor of some PV technologies on the solar spectrum distribution," Applied Energy, Elsevier, vol. 113(C), pages 302-309.
    6. Xie, W.T. & Dai, Y.J. & Wang, R.Z. & Sumathy, K., 2011. "Concentrated solar energy applications using Fresnel lenses: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2588-2606, August.
    7. Talavera, D.L. & Pérez-Higueras, P. & Ruíz-Arias, J.A. & Fernández, E.F., 2015. "Levelised cost of electricity in high concentrated photovoltaic grid connected systems: Spatial analysis of Spain," Applied Energy, Elsevier, vol. 151(C), pages 49-59.
    8. Zubi, Ghassan & Bernal-Agustín, José L. & Fracastoro, Gian Vincenzo, 2009. "High concentration photovoltaic systems applying III-V cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2645-2652, December.
    9. García-Domingo, B. & Aguilera, J. & de la Casa, J. & Fuentes, M., 2014. "Modelling the influence of atmospheric conditions on the outdoor real performance of a CPV (Concentrated Photovoltaic) module," Energy, Elsevier, vol. 70(C), pages 239-250.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernández, Eduardo F. & Talavera, D.L. & Almonacid, Florencia M. & Smestad, Greg P., 2016. "Investigating the impact of weather variables on the energy yield and cost of energy of grid-connected solar concentrator systems," Energy, Elsevier, vol. 106(C), pages 790-801.
    2. Almonacid, Florencia & Rodrigo, Pedro & Fernández, Eduardo F., 2016. "Determination of the current–voltage characteristics of concentrator systems by using different adapted conventional techniques," Energy, Elsevier, vol. 101(C), pages 146-160.
    3. Juan P. Ferrer-Rodríguez & Alvaro Valera & Eduardo F. Fernández & Florencia Almonacid & Pedro Pérez-Higueras, 2018. "Ray Tracing Comparison between Triple-Junction and Four-Junction Solar Cells in PMMA Fresnel-Based High-CPV Units," Energies, MDPI, vol. 11(9), pages 1-11, September.
    4. Nofuentes, Gustavo & de la Casa, Juan & Solís-Alemán, Ernesto M. & Fernández, Eduardo F., 2017. "Spectral impact on PV performance in mid-latitude sunny inland sites: Experimental vs. modelled results," Energy, Elsevier, vol. 141(C), pages 1857-1868.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodrigo, P. & Velázquez, Ramiro & Fernández, Eduardo F. & Almonacid, F. & Pérez-Higueras, P.J., 2016. "Analysis of electrical mismatches in high-concentrator photovoltaic power plants with distributed inverter configurations," Energy, Elsevier, vol. 107(C), pages 374-387.
    2. Fernández, Eduardo F. & Talavera, D.L. & Almonacid, Florencia M. & Smestad, Greg P., 2016. "Investigating the impact of weather variables on the energy yield and cost of energy of grid-connected solar concentrator systems," Energy, Elsevier, vol. 106(C), pages 790-801.
    3. Almonacid, Florencia & Fernandez, Eduardo F. & Mellit, Adel & Kalogirou, Soteris, 2017. "Review of techniques based on artificial neural networks for the electrical characterization of concentrator photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 938-953.
    4. Almonacid, F. & Fernández, E.F. & Mallick, T.K. & Pérez-Higueras, P.J., 2015. "High concentrator photovoltaic module simulation by neuronal networks using spectrally corrected direct normal irradiance and cell temperature," Energy, Elsevier, vol. 84(C), pages 336-343.
    5. Almonacid, Florencia & Rodrigo, Pedro & Fernández, Eduardo F., 2016. "Determination of the current–voltage characteristics of concentrator systems by using different adapted conventional techniques," Energy, Elsevier, vol. 101(C), pages 146-160.
    6. Fernández, Eduardo F. & Pérez-Higueras, P. & Almonacid, F. & Ruiz-Arias, J.A. & Rodrigo, P. & Fernandez, J.I. & Luque-Heredia, I., 2015. "Model for estimating the energy yield of a high concentrator photovoltaic system," Energy, Elsevier, vol. 87(C), pages 77-85.
    7. Fernández, Eduardo F. & Almonacid, Florencia & Garcia-Loureiro, Antonio J., 2015. "Multi-junction solar cells electrical characterization by neuronal networks under different irradiance, spectrum and cell temperature," Energy, Elsevier, vol. 90(P1), pages 846-856.
    8. Renzi, M. & Egidi, L. & Comodi, G., 2015. "Performance analysis of two 3.5kWp CPV systems under real operating conditions," Applied Energy, Elsevier, vol. 160(C), pages 687-696.
    9. Evaldo C. Gouvêa & Pedro M. Sobrinho & Teófilo M. Souza, 2017. "Spectral Response of Polycrystalline Silicon Photovoltaic Cells under Real-Use Conditions," Energies, MDPI, vol. 10(8), pages 1-13, August.
    10. Amanlou, Yasaman & Hashjin, Teymour Tavakoli & Ghobadian, Barat & Najafi, G. & Mamat, R., 2016. "A comprehensive review of Uniform Solar Illumination at Low Concentration Photovoltaic (LCPV) Systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1430-1441.
    11. Torres-Ramírez, M. & Elizondo, D. & García-Domingo, B. & Nofuentes, G. & Talavera, D.L., 2015. "Modelling the spectral irradiance distribution in sunny inland locations using an ANN-based methodology," Energy, Elsevier, vol. 86(C), pages 323-334.
    12. Rodrigo, P. & Gutiérrez, S. & Velázquez, Ramiro & Fernández, Eduardo F. & Almonacid, F. & Pérez-Higueras, P.J., 2015. "A methodology for the electrical characterization of shaded high concentrator photovoltaic modules," Energy, Elsevier, vol. 89(C), pages 768-777.
    13. Espinoza, R. & Muñoz-Cerón, E. & Aguilera, J. & de la Casa, J., 2019. "Feasibility evaluation of residential photovoltaic self-consumption projects in Peru," Renewable Energy, Elsevier, vol. 136(C), pages 414-427.
    14. Wang, Meng & Peng, Jinqing & Luo, Yimo & Shen, Zhicheng & Yang, Hongxing, 2021. "Comparison of different simplistic prediction models for forecasting PV power output: Assessment with experimental measurements," Energy, Elsevier, vol. 224(C).
    15. Hasan, Ahmed & Sarwar, Jawad & Shah, Ali Hasan, 2018. "Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 835-852.
    16. Polo, Jesús & Alonso-Abella, Miguel & Martín-Chivelet, Nuria & Alonso-Montesinos, Joaquín & López, Gabriel & Marzo, Aitor & Nofuentes, Gustavo & Vela-Barrionuevo, Nieves, 2020. "Typical Meteorological Year methodologies applied to solar spectral irradiance for PV applications," Energy, Elsevier, vol. 190(C).
    17. Rodrigo, P.M. & Talavera, D.L. & Fernández, E.F. & Almonacid, F.M. & Pérez-Higueras, P.J., 2019. "Optimum capacity of the inverters in concentrator photovoltaic power plants with emphasis on shading impact," Energy, Elsevier, vol. 187(C).
    18. Zhe Mi & Jikun Chen & Nuofu Chen & Yiming Bai & Wenwang Wu & Rui Fu & Hu Liu, 2016. "Performance Analysis of a Grid-connected High Concentrating Photovoltaic System under Practical Operation Conditions," Energies, MDPI, vol. 9(2), pages 1-12, February.
    19. Neves, Guilherme & Vilela, Waldeir & Pereira, Enio & Yamasoe, Marcia & Nofuentes, Gustavo, 2021. "Spectral impact on PV in low-latitude sites: The case of southeastern Brazil," Renewable Energy, Elsevier, vol. 164(C), pages 1306-1319.
    20. Li, Guiqiang & Xuan, Qingdong & Pei, Gang & Su, Yuehong & Ji, Jie, 2018. "Effect of non-uniform illumination and temperature distribution on concentrating solar cell - A review," Energy, Elsevier, vol. 144(C), pages 1119-1136.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:90:y:2015:i:p2:p:1878-1886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.