IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v90y2015ip1p680-690.html
   My bibliography  Save this article

Comparative analysis of turbulence models for the aerodynamic simulation of H-Darrieus rotors

Author

Listed:
  • Daróczy, László
  • Janiga, Gábor
  • Petrasch, Klaus
  • Webner, Michael
  • Thévenin, Dominique

Abstract

The importance of wind energy has increased at a rapid pace in the last years. As a result, increasing efforts are taken to improve the efficiency and extend the applicability of wind turbines to all suitable locations. Although HAWTs (horizontal axis wind turbines) are clearly the most well-spread, VAWTs (vertical axis wind turbines) show several advantages. In this category, the H-Darrieus configuration is particularly popular.

Suggested Citation

  • Daróczy, László & Janiga, Gábor & Petrasch, Klaus & Webner, Michael & Thévenin, Dominique, 2015. "Comparative analysis of turbulence models for the aerodynamic simulation of H-Darrieus rotors," Energy, Elsevier, vol. 90(P1), pages 680-690.
  • Handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:680-690
    DOI: 10.1016/j.energy.2015.07.102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215009974
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.07.102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Investigation into the optimal wind turbine layout patterns for a Hong Kong offshore wind farm," Energy, Elsevier, vol. 73(C), pages 430-442.
    2. Raciti Castelli, Marco & Englaro, Alessandro & Benini, Ernesto, 2011. "The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD," Energy, Elsevier, vol. 36(8), pages 4919-4934.
    3. Maître, T. & Amet, E. & Pellone, C., 2013. "Modeling of the flow in a Darrieus water turbine: Wall grid refinement analysis and comparison with experiments," Renewable Energy, Elsevier, vol. 51(C), pages 497-512.
    4. Capuzzi, M. & Pirrera, A. & Weaver, P.M., 2014. "A novel adaptive blade concept for large-scale wind turbines. Part I: Aeroelastic behaviour," Energy, Elsevier, vol. 73(C), pages 15-24.
    5. Trivellato, F. & Raciti Castelli, M., 2014. "On the Courant–Friedrichs–Lewy criterion of rotating grids in 2D vertical-axis wind turbine analysis," Renewable Energy, Elsevier, vol. 62(C), pages 53-62.
    6. D’Alessandro, V. & Montelpare, S. & Ricci, R. & Secchiaroli, A., 2010. "Unsteady Aerodynamics of a Savonius wind rotor: a new computational approach for the simulation of energy performance," Energy, Elsevier, vol. 35(8), pages 3349-3363.
    7. Mohamed, M.H., 2013. "Impacts of solidity and hybrid system in small wind turbines performance," Energy, Elsevier, vol. 57(C), pages 495-504.
    8. Daróczy, László & Janiga, Gábor & Thévenin, Dominique, 2014. "Systematic analysis of the heat exchanger arrangement problem using multi-objective genetic optimization," Energy, Elsevier, vol. 65(C), pages 364-373.
    9. Liu, ZhiYi & Wang, XiaoDong & Kang, Shun, 2014. "Stochastic performance evaluation of horizontal axis wind turbine blades using non-deterministic CFD simulations," Energy, Elsevier, vol. 73(C), pages 126-136.
    10. Mohamed, M.H., 2012. "Performance investigation of H-rotor Darrieus turbine with new airfoil shapes," Energy, Elsevier, vol. 47(1), pages 522-530.
    11. Almohammadi, K.M. & Ingham, D.B. & Ma, L. & Pourkashan, M., 2013. "Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine," Energy, Elsevier, vol. 58(C), pages 483-493.
    12. Mohamed, M.H., 2014. "Aero-acoustics noise evaluation of H-rotor Darrieus wind turbines," Energy, Elsevier, vol. 65(C), pages 596-604.
    13. Kjellin, J. & Bülow, F. & Eriksson, S. & Deglaire, P. & Leijon, M. & Bernhoff, H., 2011. "Power coefficient measurement on a 12 kW straight bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 36(11), pages 3050-3053.
    14. Capuzzi, M. & Pirrera, A. & Weaver, P.M., 2014. "A novel adaptive blade concept for large-scale wind turbines. Part II: Structural design and power performance," Energy, Elsevier, vol. 73(C), pages 25-32.
    15. Fischer, Gunter Reinald & Kipouros, Timoleon & Savill, Anthony Mark, 2014. "Multi-objective optimisation of horizontal axis wind turbine structure and energy production using aerofoil and blade properties as design variables," Renewable Energy, Elsevier, vol. 62(C), pages 506-515.
    16. Bedon, Gabriele & Raciti Castelli, Marco & Benini, Ernesto, 2013. "Optimization of a Darrieus vertical-axis wind turbine using blade element – momentum theory and evolutionary algorithm," Renewable Energy, Elsevier, vol. 59(C), pages 184-192.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daróczy, László & Janiga, Gábor & Thévenin, Dominique, 2016. "Analysis of the performance of a H-Darrieus rotor under uncertainty using Polynomial Chaos Expansion," Energy, Elsevier, vol. 113(C), pages 399-412.
    2. Jin, Xin & Zhao, Gaoyuan & Gao, KeJun & Ju, Wenbin, 2015. "Darrieus vertical axis wind turbine: Basic research methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 212-225.
    3. Chen, Jian & Yang, Hongxing & Yang, Mo & Xu, Hongtao & Hu, Zuohuan, 2015. "A comprehensive review of the theoretical approaches for the airfoil design of lift-type vertical axis wind turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1709-1720.
    4. Hashem, I. & Mohamed, M.H., 2018. "Aerodynamic performance enhancements of H-rotor Darrieus wind turbine," Energy, Elsevier, vol. 142(C), pages 531-545.
    5. Arab, A. & Javadi, M. & Anbarsooz, M. & Moghiman, M., 2017. "A numerical study on the aerodynamic performance and the self-starting characteristics of a Darrieus wind turbine considering its moment of inertia," Renewable Energy, Elsevier, vol. 107(C), pages 298-311.
    6. Balduzzi, Francesco & Bianchini, Alessandro & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Dimensionless numbers for the assessment of mesh and timestep requirements in CFD simulations of Darrieus wind turbines," Energy, Elsevier, vol. 97(C), pages 246-261.
    7. Ghasemian, Masoud & Nejat, Amir, 2015. "Aero-acoustics prediction of a vertical axis wind turbine using Large Eddy Simulation and acoustic analogy," Energy, Elsevier, vol. 88(C), pages 711-717.
    8. Mohamed, M.H., 2019. "Criticism study of J-Shaped darrieus wind turbine: Performance evaluation and noise generation assessment," Energy, Elsevier, vol. 177(C), pages 367-385.
    9. Meana-Fernández, Andrés & Solís-Gallego, Irene & Fernández Oro, Jesús Manuel & Argüelles Díaz, Katia María & Velarde-Suárez, Sandra, 2018. "Parametrical evaluation of the aerodynamic performance of vertical axis wind turbines for the proposal of optimized designs," Energy, Elsevier, vol. 147(C), pages 504-517.
    10. Ghazalla, R.A. & Mohamed, M.H. & Hafiz, A.A., 2019. "Synergistic analysis of a Darrieus wind turbine using computational fluid dynamics," Energy, Elsevier, vol. 189(C).
    11. Daniel Micallef & Gerard Van Bussel, 2018. "A Review of Urban Wind Energy Research: Aerodynamics and Other Challenges," Energies, MDPI, vol. 11(9), pages 1-27, August.
    12. Dessoky, Amgad & Bangga, Galih & Lutz, Thorsten & Krämer, Ewald, 2019. "Aerodynamic and aeroacoustic performance assessment of H-rotor darrieus VAWT equipped with wind-lens technology," Energy, Elsevier, vol. 175(C), pages 76-97.
    13. El-Baz, A.R. & Youssef, K. & Mohamed, M.H., 2016. "Innovative improvement of a drag wind turbine performance," Renewable Energy, Elsevier, vol. 86(C), pages 89-98.
    14. Tummala, Abhishiktha & Velamati, Ratna Kishore & Sinha, Dipankur Kumar & Indraja, V. & Krishna, V. Hari, 2016. "A review on small scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1351-1371.
    15. Mohamed, M.H. & Dessoky, A. & Alqurashi, Faris, 2019. "Blade shape effect on the behavior of the H-rotor Darrieus wind turbine: Performance investigation and force analysis," Energy, Elsevier, vol. 179(C), pages 1217-1234.
    16. Chen, Jian & Pan, Xiong & Wang, Canxing & Hu, Guojun & Xu, Hongtao & Liu, Pengwei, 2019. "Airfoil parameterization evaluation based on a modified PARASEC method for a H-Darrious rotor," Energy, Elsevier, vol. 187(C).
    17. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 108(C), pages 502-522.
    18. Zhu, Haitian & Hao, Wenxing & Li, Chun & Ding, Qinwei & Wu, Baihui, 2018. "A critical study on passive flow control techniques for straight-bladed vertical axis wind turbine," Energy, Elsevier, vol. 165(PA), pages 12-25.
    19. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 113(C), pages 461-478.
    20. Mohamed, M.H., 2016. "Reduction of the generated aero-acoustics noise of a vertical axis wind turbine using CFD (Computational Fluid Dynamics) techniques," Energy, Elsevier, vol. 96(C), pages 531-544.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:680-690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.