IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v75y2014icp136-145.html
   My bibliography  Save this article

The impact of system configuration on material utilization in the coal-based polygeneration of methanol and electricity

Author

Listed:
  • Zhang, Jianyun
  • Ma, Linwei
  • Li, Zheng
  • Ni, Weidou

Abstract

This study analyzes the material utilization flow, including element carbon (C) and hydrogen (H), together with the energy saving ratio to quantify the material utilization and energy conversion in a coal-based polygeneration system producing methanol and electricity. The C utilization ratio and H utilization ratio are defined from the perspective of material utilization, representing what percentage of element C or H is converted to final chemical product. In this study, three system configurations are considered: 1) parallel and series connections between the chemical and power sections; 2) a once-through and circulation types of methanol synthesis processes; and 3) the use of a water gas shift process. The results indicate that the series systems have better energy and material utilization performance. The detailed material utilization flow of the series systems is shown in the Sankey diagram, which illustrates how the carbon-based molecules and hydrogen-based molecules are converted and where these two elements are lost. For a series system, omitting the shift process can benefit both H utilization and energy conversion performance, with a suboptimal C utilization ratio; and the unreacted gas circulation can improve effectively the material utilization while make the energy conversation worse, which should be weighted by project designers.

Suggested Citation

  • Zhang, Jianyun & Ma, Linwei & Li, Zheng & Ni, Weidou, 2014. "The impact of system configuration on material utilization in the coal-based polygeneration of methanol and electricity," Energy, Elsevier, vol. 75(C), pages 136-145.
  • Handle: RePEc:eee:energy:v:75:y:2014:i:c:p:136-145
    DOI: 10.1016/j.energy.2014.06.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214007634
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.06.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Descamps, C. & Bouallou, C. & Kanniche, M., 2008. "Efficiency of an Integrated Gasification Combined Cycle (IGCC) power plant including CO2 removal," Energy, Elsevier, vol. 33(6), pages 874-881.
    2. Cai, Ruixian & Jin, Hongguang & Gao, Lin & Hong, Hui, 2010. "Development of multifunctional energy systems (MESs)," Energy, Elsevier, vol. 35(11), pages 4375-4382.
    3. Gao, Lin & Li, Hongqiang & Chen, Bin & Jin, Hongguang & Lin, Rumou & Hong, Hui, 2008. "Proposal of a natural gas-based polygeneration system for power and methanol production," Energy, Elsevier, vol. 33(2), pages 206-212.
    4. Li, Hongqiang & Hong, Hui & Jin, Hongguang & Cai, Ruixian, 2010. "Analysis of a feasible polygeneration system for power and methanol production taking natural gas and biomass as materials," Applied Energy, Elsevier, vol. 87(9), pages 2846-2853, September.
    5. He, Fen & Liu, Pei & Li, Zheng & Ni, Weidou, 2012. "Integrating low steam demand CO shift process to coal based polygeneration energy systems: Process design and analysis," Energy, Elsevier, vol. 45(1), pages 169-175.
    6. Rubio-Maya, Carlos & Uche-Marcuello, Javier & Martínez-Gracia, Amaya & Bayod-Rújula, Angel A., 2011. "Design optimization of a polygeneration plant fuelled by natural gas and renewable energy sources," Applied Energy, Elsevier, vol. 88(2), pages 449-457, February.
    7. Lin, Hu & Jin, Hongguang & Gao, Lin & Han, Wei, 2010. "Economic analysis of coal-based polygeneration system for methanol and power production," Energy, Elsevier, vol. 35(2), pages 858-863.
    8. Liu, Hengwei & Ni, Weidou & Li, Zheng & Ma, Linwei, 2008. "Strategic thinking on IGCC development in China," Energy Policy, Elsevier, vol. 36(1), pages 1-11, January.
    9. Xie, Kechang & Li, Wenying & Zhao, Wei, 2010. "Coal chemical industry and its sustainable development in China," Energy, Elsevier, vol. 35(11), pages 4349-4355.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Jianjun & Yang, Siyu & Qian, Yu, 2019. "A novel path for carbon-rich resource utilization with lower emission and higher efficiency: An integrated process of coal gasification and coking to methanol production," Energy, Elsevier, vol. 177(C), pages 304-318.
    2. Kler, Aleksandr M. & Tyurina, Elina A. & Mednikov, Aleksandr S., 2018. "A plant for methanol and electricity production: Technical-economic analysis," Energy, Elsevier, vol. 165(PB), pages 890-899.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Chang & Feng, Xiao, 2012. "Evaluation indicators for energy-chemical systems with multi-feed and multi-product," Energy, Elsevier, vol. 43(1), pages 344-354.
    2. Li, Yuanyuan & Zhang, Guoqiang & Yang, Yongping & Zhai, Dailong & Zhang, Kai & Xu, Gang, 2014. "Thermodynamic analysis of a coal-based polygeneration system with partial gasification," Energy, Elsevier, vol. 72(C), pages 201-214.
    3. Zhang, Jianyun & Liu, Pei & Zhou, Zhe & Ma, Linwei & Li, Zheng & Ni, Weidou, 2014. "A mixed-integer nonlinear programming approach to the optimal design of heat network in a polygeneration energy system," Applied Energy, Elsevier, vol. 114(C), pages 146-154.
    4. Kyriakarakos, George & Dounis, Anastasios I. & Rozakis, Stelios & Arvanitis, Konstantinos G. & Papadakis, George, 2011. "Polygeneration microgrids: A viable solution in remote areas for supplying power, potable water and hydrogen as transportation fuel," Applied Energy, Elsevier, vol. 88(12), pages 4517-4526.
    5. Chen, Zhewen & Zhang, Xiaosong & Han, Wei & Gao, Lin & Li, Sheng, 2018. "A power generation system with integrated supercritical water gasification of coal and CO2 capture," Energy, Elsevier, vol. 142(C), pages 723-730.
    6. Kiso, F. & Matsuo, M., 2011. "A simulation study on the enhancement of the shift reaction by water injection into a gasifier," Energy, Elsevier, vol. 36(7), pages 4032-4040.
    7. Zhang, Jianyun & Zhou, Zhe & Ma, Linwei & Li, Zheng & Ni, Weidou, 2013. "Efficiency of wet feed IGCC (integrated gasification combined cycle) systems with coal–water slurry preheating vaporization technology," Energy, Elsevier, vol. 51(C), pages 137-145.
    8. Narvaez, A. & Chadwick, D. & Kershenbaum, L., 2014. "Small-medium scale polygeneration systems: Methanol and power production," Applied Energy, Elsevier, vol. 113(C), pages 1109-1117.
    9. Calise, Francesco & de Notaristefani di Vastogirardi, Giulio & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2018. "Simulation of polygeneration systems," Energy, Elsevier, vol. 163(C), pages 290-337.
    10. Guo, Zhihang & Wang, Qinhui & Fang, Mengxiang & Luo, Zhongyang & Cen, Kefa, 2014. "Thermodynamic and economic analysis of polygeneration system integrating atmospheric pressure coal pyrolysis technology with circulating fluidized bed power plant," Applied Energy, Elsevier, vol. 113(C), pages 1301-1314.
    11. Kler, Aleksandr M. & Tyurina, Elina A. & Mednikov, Aleksandr S., 2018. "A plant for methanol and electricity production: Technical-economic analysis," Energy, Elsevier, vol. 165(PB), pages 890-899.
    12. Jana, Kuntal & Ray, Avishek & Majoumerd, Mohammad Mansouri & Assadi, Mohsen & De, Sudipta, 2017. "Polygeneration as a future sustainable energy solution – A comprehensive review," Applied Energy, Elsevier, vol. 202(C), pages 88-111.
    13. Pérez-Fortes, M. & Bojarski, A.D. & Velo, E. & Nougués, J.M. & Puigjaner, L., 2009. "Conceptual model and evaluation of generated power and emissions in an IGCC plant," Energy, Elsevier, vol. 34(10), pages 1721-1732.
    14. Huang, Yi & Yi, Qun & Kang, Jing-Xian & Zhang, Ya-Gang & Li, Wen-Ying & Feng, Jie & Xie, Ke-Chang, 2019. "Investigation and optimization analysis on deployment of China coal chemical industry under carbon emission constraints," Applied Energy, Elsevier, vol. 254(C).
    15. Yi, Qun & Feng, Jie & Wu, Yanli & Li, Wenying, 2014. "3E (energy, environmental, and economy) evaluation and assessment to an innovative dual-gas polygeneration system," Energy, Elsevier, vol. 66(C), pages 285-294.
    16. Rong, Aiying & Lahdelma, Risto, 2016. "Role of polygeneration in sustainable energy system development challenges and opportunities from optimization viewpoints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 363-372.
    17. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    18. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    19. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
    20. Geng, Jiang-Bo & Ji, Qiang, 2014. "Multi-perspective analysis of China's energy supply security," Energy, Elsevier, vol. 64(C), pages 541-550.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:75:y:2014:i:c:p:136-145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.