IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v72y2014icp521-535.html
   My bibliography  Save this article

Numerical simulation and process optimization of an aluminum holding furnace based on response surface methodology and uniform design

Author

Listed:
  • Wang, Ji-min
  • Lan, Shen
  • Li, Wen-ke

Abstract

It is indispensable for strengthening smelting process and controlling fine to understand metallurgical behaviors and mechanism of production process of aluminum holding furnaces. A CFD (computational fluid dynamics) compressive process model was developed and integrated with energy distribution regime using user subroutines based on FLUENT code. Integrated intelligence ideas with a combination of response surface methodology and uniform design was employed to quantitatively achieve the inherent laws of thermal characteristics and mechanism behind various factors. The optimal scheme obtained from the compromise of the two desirable responses was as follows: flue position of same side, oxidant type of pure oxygen, air preheated temperature of 719 K, natural gas velocity of 108.88 m/s, burner height of 1150 mm, vertical burner angle of 5°, pool depth of 625 mm, horizontal spacing between burners of 2050 mm, height-radius ratio of 0.6, air–fuel ratio of 1.04, and burner load ratio of 1:1. The maximal end aluminum temperature uniform coefficient of 12.85% and minimal energy consumption per ton of aluminum of 0.01092 kg ce/t-Al were obtained. Confirmed experiments demonstrated that such a combination of the CFD, RSM (response surface methodology) and UD (uniform design) is a powerful and useful approach for process optimization of aluminum holding furnaces.

Suggested Citation

  • Wang, Ji-min & Lan, Shen & Li, Wen-ke, 2014. "Numerical simulation and process optimization of an aluminum holding furnace based on response surface methodology and uniform design," Energy, Elsevier, vol. 72(C), pages 521-535.
  • Handle: RePEc:eee:energy:v:72:y:2014:i:c:p:521-535
    DOI: 10.1016/j.energy.2014.05.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214006446
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.05.077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Najafi, Gholamhassan & Ghobadian, Barat & Yusaf, Talal & Safieddin Ardebili, Seyed Mohammad & Mamat, Rizalman, 2015. "Optimization of performance and exhaust emission parameters of a SI (spark ignition) engine with gasoline–ethanol blended fuels using response surface methodology," Energy, Elsevier, vol. 90(P2), pages 1815-1829.
    2. Kim, Joon-Hyung & Cho, Bo-Min & Kim, Sung & Kim, Jin-Woo & Suh, Jun-Won & Choi, Young-Seok & Kanemoto, Toshiaki & Kim, Jin-Hyuk, 2017. "Design technique to improve the energy efficiency of a counter-rotating type pump-turbine," Renewable Energy, Elsevier, vol. 101(C), pages 647-659.
    3. Garg, A. & Lam, Jasmine Siu Lee, 2017. "Design of explicit models for estimating efficiency characteristics of microbial fuel cells," Energy, Elsevier, vol. 134(C), pages 136-156.
    4. Jóźwiak, Piotr & Hercog, Jarosław & Kiedrzyńska, Aleksandra & Badyda, Krzysztof, 2019. "CFD analysis of natural gas substitution with syngas in the industrial furnaces," Energy, Elsevier, vol. 179(C), pages 593-602.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:72:y:2014:i:c:p:521-535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.