IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v68y2014icp370-376.html

Thermoacoustic oscillation basing on parameter exciting

Author

Listed:
  • Wu, Feng
  • Shu, Anqing
  • Guo, Fangzhong
  • Wang, Tuo

Abstract

To reveal the physical mechanism of the thermoacoustic oscillation is an important task of basic research on thermoacoustics. The startup process of a thermoacoustic oscillation is a parametric excitation process. The so-called “parameter exciting” refers to that the oscillation process is realized by the periodic change of parameter in the system. It is generated by the capacitance change in a real thermoacoustic system. In this paper, the thermoacoustic system is simulated as a nonlinear fluid network. It consists of a variable capacitor, an inductor, a nonlinear resistor and a pumping source. It is in line with an equation of nonlinear parametric vibration. The equation is deduced by following mass, momentum, energy and state equations of the working gas parcel simultaneously. The solution of the equation of nonlinear parametric vibration has been obtained using “averaging method”. The analysis shows that the inductance–capacitance resonance for the thermoacoustic system is one of the parameter oscillations with a limit cycle. The condition of a homeostatic periodic motion for the thermoacoustic system has been discussed. The stability of the thermoacoustic oscillation described by the limit cycle has been analyzed using “Lyapunov function method”. This theory gives a better understanding of the mechanism of thermoacoustic oscillation.

Suggested Citation

  • Wu, Feng & Shu, Anqing & Guo, Fangzhong & Wang, Tuo, 2014. "Thermoacoustic oscillation basing on parameter exciting," Energy, Elsevier, vol. 68(C), pages 370-376.
  • Handle: RePEc:eee:energy:v:68:y:2014:i:c:p:370-376
    DOI: 10.1016/j.energy.2014.02.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214002060
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.02.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. S. Backhaus & G. W. Swift, 1999. "A thermoacoustic Stirling heat engine," Nature, Nature, vol. 399(6734), pages 335-338, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karimi, Nader, 2014. "Response of a conical, laminar premixed flame to low amplitude acoustic forcing – A comparison between experiment and kinematic theories," Energy, Elsevier, vol. 78(C), pages 490-500.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph J.W. Kirmse & Oyeniyi A. Oyewunmi & Andrew J. Haslam & Christos N. Markides, 2016. "Comparison of a Novel Organic-Fluid Thermofluidic Heat Converter and an Organic Rankine Cycle Heat Engine," Energies, MDPI, vol. 9(7), pages 1-26, June.
    2. Zare, Shahryar & Pourfayaz, Fathollah & Tavakolpour-Saleh, A.R. & Lashaki, Reza Ahmadi, 2024. "A design method based on neural network to predict thermoacoustic Stirling engine parameters: Experimental and theoretical assessment," Energy, Elsevier, vol. 309(C).
    3. Xu, Jingyuan & Hu, Jianying & Luo, Ercang & Zhang, Limin & Dai, Wei, 2019. "A cascade-looped thermoacoustic driven cryocooler with different-diameter resonance tubes. Part I: Theoretical analysis of thermodynamic performance and characteristics," Energy, Elsevier, vol. 181(C), pages 943-953.
    4. Li, Linyu & Wu, Zhanghua & Hu, Jianying & Yu, Guoyao & Luo, Ercang & Dai, Wei, 2016. "A novel heat-driven thermoacoustic natural gas liquefaction system. Part I: Coupling between refrigerator and linear motor," Energy, Elsevier, vol. 117(P2), pages 523-529.
    5. Kisha, Wigdan & Riley, Paul & McKechnie, Jon & Hann, David, 2021. "Asymmetrically heated multi-stage travelling-wave thermoacoustic electricity generator," Energy, Elsevier, vol. 235(C).
    6. Bi, Tianjiao & Wu, Zhanghua & Zhang, Limin & Yu, Guoyao & Luo, Ercang & Dai, Wei, 2017. "Development of a 5kW traveling-wave thermoacoustic electric generator," Applied Energy, Elsevier, vol. 185(P2), pages 1355-1361.
    7. Hu, Yiwei & Xu, Jingyuan & Zhao, Dan & Yang, Rui & Hu, Jianying & Luo, Ercang, 2024. "Analysis on a single-stage direct-coupled thermoacoustic refrigerator driven by low/medium-grade heat," Applied Energy, Elsevier, vol. 361(C).
    8. Tang, K. & Feng, Y. & Jin, S.H. & Jin, T. & Li, M., 2015. "Performance comparison of jet pumps with rectangular and circular tapered channels for a loop-structured traveling-wave thermoacoustic engine," Applied Energy, Elsevier, vol. 148(C), pages 305-313.
    9. Guo, Lixian & Zhao, Dan & Cheng, Li & Dong, Xu & Xu, Jingyuan, 2024. "Enhancing energy conversion performances in standing-wave thermoacoustic engine with externally forcing periodic oscillations," Energy, Elsevier, vol. 292(C).
    10. Zhang, Yutao & Shi, Xueqiang & Li, Yaqing & Zhang, Yuanbo & Liu, Yurui, 2020. "Characteristics of thermoacoustic conversion and coupling effect at different temperature gradients," Energy, Elsevier, vol. 197(C).
    11. Wu, Feng & Chen, Lingen & Li, Duanyong & Ding, Guozhong & Zhang, Chunping & Kan, Xuxian, 2009. "Thermodynamic performance on a thermo-acoustic micro-cycle under the condition of weak gas degeneracy," Applied Energy, Elsevier, vol. 86(7-8), pages 1119-1123, July.
    12. Zhu, Shunmin & Yu, Guoyao & O, Jongmin & Xu, Tao & Wu, Zhanghua & Dai, Wei & Luo, Ercang, 2018. "Modeling and experimental investigation of a free-piston Stirling engine-based micro-combined heat and power system," Applied Energy, Elsevier, vol. 226(C), pages 522-533.
    13. Wang, Kai & Sanders, Seth R. & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Stirling cycle engines for recovering low and moderate temperature heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 89-108.
    14. Oyewunmi, Oyeniyi A. & Kirmse, Christoph J.W. & Haslam, Andrew J. & Müller, Erich A. & Markides, Christos N., 2017. "Working-fluid selection and performance investigation of a two-phase single-reciprocating-piston heat-conversion engine," Applied Energy, Elsevier, vol. 186(P3), pages 376-395.
    15. Xu, Jingyuan & Hu, Jianying & Sun, Yanlei & Wang, Huizhi & Wu, Zhanghua & Hu, Jiangfeng & Hochgreb, Simone & Luo, Ercang, 2020. "A cascade-looped thermoacoustic driven cryocooler with different-diameter resonance tubes. Part Ⅱ: Experimental study and comparison," Energy, Elsevier, vol. 207(C).
    16. Wang, Kai & Sun, Daming & Xu, Ya & Zou, Jiang & Zhang, Xiaobin & Qiu, Limin, 2014. "Operating characteristics of thermoacoustic compression based on alternating to direct gas flow conversion," Energy, Elsevier, vol. 75(C), pages 338-348.
    17. Zare, Shahryar & Tavakolpour-saleh, A.R. & Aghahosseini, A. & Sangdani, M.H. & Mirshekari, Reza, 2021. "Design and optimization of Stirling engines using soft computing methods: A review," Applied Energy, Elsevier, vol. 283(C).
    18. Li, Dong-Hui & Chen, Yan-Yan & Luo, Er-Cang & Wu, Zhang-Hua, 2014. "Study of a liquid-piston traveling-wave thermoacoustic heat engine with different working gases," Energy, Elsevier, vol. 74(C), pages 158-163.
    19. Yang, Rui & Meir, Avishai & Ramon, Guy Z., 2022. "A standing-wave, phase-change thermoacoustic engine: Experiments and model projections," Energy, Elsevier, vol. 258(C).
    20. Xiao, Lei & Chi, Jiaxin & Luo, Kaiqi & Wu, Zhanghua & Xu, Jingyuan & Luo, Ercang, 2024. "Influence of DC flow on the performance of a bypass-typed heat-driven thermoacoustic refrigerator," Energy, Elsevier, vol. 306(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:68:y:2014:i:c:p:370-376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.