IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v45y2012i1p228-236.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Thermoeconomic analysis of a micro-CHP installation in a tertiary sector building through dynamic simulation

Author

Listed:
  • Campos-Celador, Álvaro
  • Pérez-Iribarren, Estibaliz
  • Sala, José María
  • del Portillo-Valdés, Luis Alfonso

Abstract

A thermoeconomic analysis has been applied to the annual operation of a micro-cogeneration installation in a tertiary sector building combining the capabilities of dynamic simulation with the thermoeconomic analysis. The SenerTec’s DACHS micro-cogeneration unit is considered integrated in a heating and domestic hot water installation, meeting the electric and thermal loads of a residential building. A six minute-based exergy analysis has been implemented in the TRNSYS v.16 thermal simulation software, while the Life Cycle Analysis (LCA) has been developed to determine the cumulative exergy consumption of the different components of the plant. The thermoeconomic analysis of the micro-CHP installation is performed for its annual operation which includes the analysis of the entire system, considering the costs and exergy content of both flows and components. The relationship between the annual contribution to the costs of the components and the energy consumption has resulted equal to 34.2%. A combined production cost value has been defined and has been compared with the micro-CHP unit and the conventional production system, being 34.6 and 45.42 c€/kWhex respectively, underlying the opportunity that micro-CHP units provide in residential installations.

Suggested Citation

  • Campos-Celador, Álvaro & Pérez-Iribarren, Estibaliz & Sala, José María & del Portillo-Valdés, Luis Alfonso, 2012. "Thermoeconomic analysis of a micro-CHP installation in a tertiary sector building through dynamic simulation," Energy, Elsevier, vol. 45(1), pages 228-236.
  • Handle: RePEc:eee:energy:v:45:y:2012:i:1:p:228-236
    DOI: 10.1016/j.energy.2012.01.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212000254
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.01.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsatsaronis, Georgios & Winhold, Michael, 1985. "Exergoeconomic analysis and evaluation of energy-conversion plants—I. A new general methodology," Energy, Elsevier, vol. 10(1), pages 69-80.
    2. Kalinci, Yildiz & Balta, M. Tolga & Hepbasli, Arif, 2009. "Performance assessment of a geothermally heated building," Energy Policy, Elsevier, vol. 37(4), pages 1502-1508, April.
    3. Hamed, Osman A. & Al-Washmi, Hamed A. & Al-Otaibi, Holayil A., 2006. "Thermoeconomic analysis of a power/water cogeneration plant," Energy, Elsevier, vol. 31(14), pages 2699-2709.
    4. Roque Díaz, P. & Benito, Y.R. & Parise, J.A.R., 2010. "Thermoeconomic assessment of a multi-engine, multi-heat-pump CCHP (combined cooling, heating and power generation) system – A case study," Energy, Elsevier, vol. 35(9), pages 3540-3550.
    5. González, A. & Sala, J.M. & Flores, I. & López, L.M., 2003. "Application of thermoeconomics to the allocation of environmental loads in the life cycle assessment of cogeneration plants," Energy, Elsevier, vol. 28(6), pages 557-574.
    6. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    7. Yildiz, Abdullah & Güngör, Ali, 2009. "Energy and exergy analyses of space heating in buildings," Applied Energy, Elsevier, vol. 86(10), pages 1939-1948, October.
    8. Lozano, M.A. & Valero, A., 1993. "Theory of the exergetic cost," Energy, Elsevier, vol. 18(9), pages 939-960.
    9. Szargut, Jan, 1980. "International progress in second law analysis," Energy, Elsevier, vol. 5(8), pages 709-718.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos Ulloa & Jacobo Porteiro & Pablo Eguía & José M. Pousada-Carballo, 2013. "Application Model for a Stirling Engine Micro-Generation System in Caravans in Different European Locations," Energies, MDPI, vol. 6(2), pages 1-16, February.
    2. Monica Costea & Michel Feidt, 2022. "A Review Regarding Combined Heat and Power Production and Extensions: Thermodynamic Modelling and Environmental Impact," Energies, MDPI, vol. 15(23), pages 1-25, November.
    3. Sangi, Roozbeh & Martín, Paula Martínez & Müller, Dirk, 2016. "Thermoeconomic analysis of a building heating system," Energy, Elsevier, vol. 111(C), pages 351-363.
    4. Agudelo, Andrés & Valero, Antonio & Torres, César, 2012. "Allocation of waste cost in thermoeconomic analysis," Energy, Elsevier, vol. 45(1), pages 634-643.
    5. Sachajdak, Andrzej & Lappalainen, Jari & Mikkonen, Hannu, 2019. "Dynamic simulation in development of contemporary energy systems – oxy combustion case study," Energy, Elsevier, vol. 181(C), pages 964-973.
    6. Pérez-Iribarren, E. & González-Pino, I. & Azkorra-Larrinaga, Z. & Gómez-Arriarán, I., 2020. "Optimal design and operation of thermal energy storage systems in micro-cogeneration plants," Applied Energy, Elsevier, vol. 265(C).
    7. Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
    8. Luo, Xianglong & Hu, Jiahao & Zhao, Jun & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2014. "Improved exergoeconomic analysis of a retrofitted natural gas-based cogeneration system," Energy, Elsevier, vol. 72(C), pages 459-475.
    9. García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "The role of an exergy-based building stock model for exploration of future decarbonisation scenarios and policy making," Energy Policy, Elsevier, vol. 105(C), pages 467-483.
    10. Lamas, Wendell de Queiroz, 2013. "Fuzzy thermoeconomic optimisation applied to a small waste water treatment plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 214-219.
    11. Veyron, Mathilde & Voirand, Antoine & Mion, Nicolas & Maragna, Charles & Mugnier, Daniel & Clausse, Marc, 2022. "Dynamic exergy and economic assessment of the implementation of seasonal underground thermal energy storage in existing solar district heating," Energy, Elsevier, vol. 261(PA).
    12. Kotowicz, Janusz & Uchman, Wojciech, 2021. "Analysis of the integrated energy system in residential scale: Photovoltaics, micro-cogeneration and electrical energy storage," Energy, Elsevier, vol. 227(C).
    13. Murugan, S. & Horák, Bohumil, 2016. "A review of micro combined heat and power systems for residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 144-162.
    14. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    15. García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "A comparison of an energy/economic-based against an exergoeconomic-based multi-objective optimisation for low carbon building energy design," Energy, Elsevier, vol. 128(C), pages 244-263.
    16. González-Pino, I. & Pérez-Iribarren, E. & Campos-Celador, A. & Terés-Zubiaga, J., 2020. "Analysis of the integration of micro-cogeneration units in space heating and domestic hot water plants," Energy, Elsevier, vol. 200(C).
    17. Guillermo Rey & Carlos Ulloa & Jose Luis Míguez & Elena Arce, 2016. "Development of an ICE-Based Micro-CHP System Based on a Stirling Engine; Methodology for a Comparative Study of its Performance and Sensitivity Analysis in Recreational Sailing Boats in Different Euro," Energies, MDPI, vol. 9(4), pages 1-14, March.
    18. Roselli, C. & Marrasso, E. & Tariello, F. & Sasso, M., 2020. "How different power grid efficiency scenarios affect the energy and environmental feasibility of a polygeneration system," Energy, Elsevier, vol. 201(C).
    19. Sangi, Roozbeh & Müller, Dirk, 2019. "Application of the second law of thermodynamics to control: A review," Energy, Elsevier, vol. 174(C), pages 938-953.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. César Torres & Antonio Valero, 2021. "The Exergy Cost Theory Revisited," Energies, MDPI, vol. 14(6), pages 1-42, March.
    2. Lozano, M.A. & Carvalho, M. & Serra, L.M., 2009. "Operational strategy and marginal costs in simple trigeneration systems," Energy, Elsevier, vol. 34(11), pages 2001-2008.
    3. Roque Díaz, P. & Benito, Y.R. & Parise, J.A.R., 2010. "Thermoeconomic assessment of a multi-engine, multi-heat-pump CCHP (combined cooling, heating and power generation) system – A case study," Energy, Elsevier, vol. 35(9), pages 3540-3550.
    4. Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
    5. Piacentino, Antonio & Cardona, Fabio, 2010. "Scope-Oriented Thermoeconomic analysis of energy systems. Part I: Looking for a non-postulated cost accounting for the dissipative devices of a vapour compression chiller. Is it feasible?," Applied Energy, Elsevier, vol. 87(3), pages 943-956, March.
    6. Wang, Zefeng & Han, Wei & Zhang, Na & Liu, Meng & Jin, Hongguang, 2017. "Exergy cost allocation method based on energy level (ECAEL) for a CCHP system," Energy, Elsevier, vol. 134(C), pages 240-247.
    7. Baldvinsson, Ivar & Nakata, Toshihiko, 2014. "A comparative exergy and exergoeconomic analysis of a residential heat supply system paradigm of Japan and local source based district heating system using SPECO (specific exergy cost) method," Energy, Elsevier, vol. 74(C), pages 537-554.
    8. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    9. Ma, Xiaoli & Zhao, Xudong & Zhang, Yufeng & Liu, Kaixin & Yang, Hui & Li, Jing & Akhlaghi, Yousef Golizadeh & Liu, Haowen & Han, Zhonghe & Liu, Zhijian, 2022. "Combined Rankine Cycle and dew point cooler for energy efficient power generation of the power plants - A review and perspective study," Energy, Elsevier, vol. 238(PA).
    10. Banerjee, Avishek & Tierney, Michael. J. & Thorpe, Roger. N., 2012. "Thermoeconomics, cost benefit analysis, and a novel way of dealing with revenue generating dissipative units applied to candidate decentralised energy systems for Indian rural villages," Energy, Elsevier, vol. 43(1), pages 477-488.
    11. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Framework for advanced exergoeconomic performance analysis and optimization of an oil shale retorting process," Energy, Elsevier, vol. 109(C), pages 62-76.
    12. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    13. Haydargil, Derya & Abuşoğlu, Ayşegül, 2018. "A comparative thermoeconomic cost accounting analysis and evaluation of biogas engine-powered cogeneration," Energy, Elsevier, vol. 159(C), pages 97-114.
    14. Lazzaretto, Andrea, 2009. "A critical comparison between thermoeconomic and emergy analyses algebra," Energy, Elsevier, vol. 34(12), pages 2196-2205.
    15. Torres, C. & Valero, A. & Rangel, V. & Zaleta, A., 2008. "On the cost formation process of the residues," Energy, Elsevier, vol. 33(2), pages 144-152.
    16. Calise, F. & Dentice d'Accadia, M. & Piacentino, A., 2015. "Exergetic and exergoeconomic analysis of a renewable polygeneration system and viability study for small isolated communities," Energy, Elsevier, vol. 92(P3), pages 290-307.
    17. dos Santos, Rodrigo G. & de Faria, Pedro R. & Santos, José J.C.S. & da Silva, Julio A.M. & Flórez-Orrego, Daniel, 2016. "Thermoeconomic modeling for CO2 allocation in steam and gas turbine cogeneration systems," Energy, Elsevier, vol. 117(P2), pages 590-603.
    18. Ferrara, G. & Lanzini, A. & Leone, P. & Ho, M.T. & Wiley, D.E., 2017. "Exergetic and exergoeconomic analysis of post-combustion CO2 capture using MEA-solvent chemical absorption," Energy, Elsevier, vol. 130(C), pages 113-128.
    19. Silveira, Jose Luz & Lamas, Wendell de Queiroz & Tuna, Celso Eduardo & Villela, Iraides Aparecida de Castro & Miro, Laura Siso, 2012. "Ecological efficiency and thermoeconomic analysis of a cogeneration system at a hospital," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2894-2906.
    20. Zare, V. & Mahmoudi, S.M.S. & Yari, M. & Amidpour, M., 2012. "Thermoeconomic analysis and optimization of an ammonia–water power/cooling cogeneration cycle," Energy, Elsevier, vol. 47(1), pages 271-283.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:45:y:2012:i:1:p:228-236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.