IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v330y2025ics0360544225026039.html
   My bibliography  Save this article

A NOx emission concentration prediction method for CFB unit based on one-dimensional semi-empirical model corrected by GRU network

Author

Listed:
  • Wang, Fang
  • Ma, Suxia
  • Niu, Yuanyuan
  • Liu, Zhongyuan

Abstract

The deep peak shaving of thermal power units has raised higher requirements for ultra-low emission of the units. Accurately monitoring NOx emission concentration in CFB units is a prerequisite for NOx emission control. Mechanism-based NOx emission concentration prediction methods are explanatory, but may have large prediction errors due to their inability to simulate the thermal inertia of boilers well sometimes; Machine learning based methods have high prediction accuracy, but poor interpretability due to lack of physical significance. A fusion model for predicting NOx emission concentration in CFB units is proposed in this paper. First, a one-dimensional semi-empirical model is constructed to simulate hydrodynamics, combustion, and NOx generation in the furnace and predict initial values of NOx emission concentration. Considering that CFB units often operate in off-design conditions to meet peak shaving requirements and the empirical values of some parameters are no longer applicable, a parameter optimization method is introduced to make the mechanism model more realistic. Then, a gated recurrent unit (GRU) neural network is introduced as an error correction model to fine-tune the initial NOx emission concentration. Taking two CFB units as research objects, the effectiveness of the fusion model is demonstrated in both steady state and dynamic process. The results show that the proposed model is superior to the single mechanism model, GRU model and other neural networks. The combination of mechanism and machine learning methods enables the fusion model to have both high prediction accuracy and physical significance.

Suggested Citation

  • Wang, Fang & Ma, Suxia & Niu, Yuanyuan & Liu, Zhongyuan, 2025. "A NOx emission concentration prediction method for CFB unit based on one-dimensional semi-empirical model corrected by GRU network," Energy, Elsevier, vol. 330(C).
  • Handle: RePEc:eee:energy:v:330:y:2025:i:c:s0360544225026039
    DOI: 10.1016/j.energy.2025.136961
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225026039
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136961?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lavanya, R. & Murukesh, C. & Shanker, N.R., 2023. "Microclimatic HVAC system for nano painted rooms using PSO based occupancy regression controller," Energy, Elsevier, vol. 278(PA).
    2. Wang, Hechun & Hu, Deng & Yang, Chuanlei & Wang, Binbin & Duan, Baoyin & Wang, Yinyan, 2024. "Model construction and multi-objective performance optimization of a biodiesel-diesel dual-fuel engine based on CNN-GRU," Energy, Elsevier, vol. 301(C).
    3. Li, Shicheng & Ma, Suxia & Wang, Fang, 2023. "A combined NOx emission prediction model based on semi-empirical model and black box models," Energy, Elsevier, vol. 264(C).
    4. Xie, Peiran & Gao, Mingming & Zhang, Hongfu & Niu, Yuguang & Wang, Xiaowen, 2020. "Dynamic modeling for NOx emission sequence prediction of SCR system outlet based on sequence to sequence long short-term memory network," Energy, Elsevier, vol. 190(C).
    5. Tan, Peng & Xia, Ji & Zhang, Cheng & Fang, Qingyan & Chen, Gang, 2016. "Modeling and reduction of NOX emissions for a 700 MW coal-fired boiler with the advanced machine learning method," Energy, Elsevier, vol. 94(C), pages 672-679.
    6. Shi, Yan & Zhong, Wenqi & Chen, Xi & Yu, A.B. & Li, Jie, 2019. "Combustion optimization of ultra supercritical boiler based on artificial intelligence," Energy, Elsevier, vol. 170(C), pages 804-817.
    7. Wang, Kang & Zhang, Xinhai & Feng, Hailong & Li, Ming & Liu, Jinxin & Song, Zhiping, 2025. "Hybrid acceleration schedule design for gas turbine engine using adaptive sample error weighting multilayer perceptron network," Energy, Elsevier, vol. 318(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shicheng & Ma, Suxia & Wang, Fang, 2023. "A combined NOx emission prediction model based on semi-empirical model and black box models," Energy, Elsevier, vol. 264(C).
    2. Fan, Yuchen & Liu, Xin & Zhang, Chaoqun & Li, Chi & Li, Xinying & Wang, Heyang, 2024. "Dynamic prediction of boiler NOx emission with graph convolutional gated recurrent unit model optimized by genetic algorithm," Energy, Elsevier, vol. 294(C).
    3. Lv, You & Lv, Xuguang & Fang, Fang & Yang, Tingting & Romero, Carlos E., 2020. "Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants," Energy, Elsevier, vol. 192(C).
    4. Wang, Zhi & Peng, Xianyong & Zhou, Huaichun & Cao, Shengxian & Huang, Wenbo & Yan, Weijie & Li, Kuangyu & Fan, Siyuan, 2024. "A dynamic modeling method using channel-selection convolutional neural network: A case study of NOx emission," Energy, Elsevier, vol. 290(C).
    5. Tang, Zhenhao & Wang, Shikui & Chai, Xiangying & Cao, Shengxian & Ouyang, Tinghui & Li, Yang, 2022. "Auto-encoder-extreme learning machine model for boiler NOx emission concentration prediction," Energy, Elsevier, vol. 256(C).
    6. Zhu, Yukun & Yu, Cong & Fan, Wei & Yu, Haiquan & Jin, Wei & Chen, Shuo & Liu, Xia, 2023. "A novel NOx emission prediction model for multimodal operational utility boilers considering local features and prior knowledge," Energy, Elsevier, vol. 280(C).
    7. Chuanpeng Zhu & Pu Huang & Yiguo Li, 2022. "Closed-Loop Combustion Optimization Based on Dynamic and Adaptive Models with Application to a Coal-Fired Boiler," Energies, MDPI, vol. 15(14), pages 1-16, July.
    8. Wang, Zhi & Yin, Yongbo & Yao, Guojia & Li, Kuangyu & Liu, Yang & Liu, Xuanqi & Tang, Zhenhao & Zhang, Fan & Peng, Xianyong & Lin, Jinxing & Zhu, Hang & Zhou, Huaichun, 2025. "BoilerNet: Deep reinforcement learning-based combustion optimization network for pulverized coal boiler," Energy, Elsevier, vol. 318(C).
    9. Li, Xinli & Wang, Yingnan & Zhu, Yun & Yang, Guotian & Liu, He, 2021. "Temperature prediction of combustion level of ultra-supercritical unit through data mining and modelling," Energy, Elsevier, vol. 231(C).
    10. Tan, Peng & He, Biao & Zhang, Cheng & Rao, Debei & Li, Shengnan & Fang, Qingyan & Chen, Gang, 2019. "Dynamic modeling of NOX emission in a 660 MW coal-fired boiler with long short-term memory," Energy, Elsevier, vol. 176(C), pages 429-436.
    11. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Syed Muhammad Arafat & Sher Afghan & Ahmad Hassan Kamal & Muhammad Asim & Muhammad Haider Khan & Muhammad Waqas Rafique & Uwe Naumann & Sajawal Gul Niazi &, 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency," Energies, MDPI, vol. 13(21), pages 1-33, October.
    12. Xue, Wenyuan & Lu, Yichen & Wang, Zhi & Cao, Shengxian & Sui, Mengxuan & Yang, Yuan & Li, Jiyuan & Xie, Yubin, 2024. "Reconstructing near-water-wall temperature in coal-fired boilers using improved transfer learning and hidden layer configuration optimization," Energy, Elsevier, vol. 294(C).
    13. Zhou, Jian & Zhang, Wei, 2023. "Coal consumption prediction in thermal power units: A feature construction and selection method," Energy, Elsevier, vol. 273(C).
    14. Adamczyk, Wojciech & Myöhänen, Kari & Klajny, Marcin & Kettunen, Ari & Klimanek, Adam & Ryfa, Arkadiusz & Białecki, Ryszard & Sładek, Sławomir & Zdeb, Janusz & Budnik, Michał & Peczkis, Grzegorz & Prz, 2024. "Development and demonstration of advanced predictive and prescriptive algorithms to control industrial installation," Energy, Elsevier, vol. 313(C).
    15. Li, Ruilian & Zeng, Deliang & Li, Tingting & Ti, Baozhong & Hu, Yong, 2023. "Real-time prediction of SO2 emission concentration under wide range of variable loads by convolution-LSTM VE-transformer," Energy, Elsevier, vol. 269(C).
    16. Yang, Guotian & Wang, Yingnan & Li, Xinli, 2020. "Prediction of the NOx emissions from thermal power plant using long-short term memory neural network," Energy, Elsevier, vol. 192(C).
    17. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    18. Tuttle, Jacob F. & Blackburn, Landen D. & Andersson, Klas & Powell, Kody M., 2021. "A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling," Applied Energy, Elsevier, vol. 292(C).
    19. Wang, Yingnan & Chen, Xu & Zhao, Chunhui, 2024. "A data-driven soft sensor model for coal-fired boiler SO2 concentration prediction with non-stationary characteristic," Energy, Elsevier, vol. 300(C).
    20. Zhong, Yu-Xiu & Wang, Xin & Xu, Gang & Ning, Xinyu & Zhou, Lin & Tang, Wen & Wang, Ming-Hao & Wang, Tong & Xu, Jun & Jiang, Long & Wang, Yi & Su, Sheng & Hu, Song & Xiang, Jun, 2023. "Investigation on slagging and high-temperature corrosion prevention and control of a 1000 MW ultra supercritical double tangentially fired boiler," Energy, Elsevier, vol. 275(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:330:y:2025:i:c:s0360544225026039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.