IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v32y2007i4p335-343.html
   My bibliography  Save this article

Minimizing the entropy production in a chemical process for dehydrogenation of propane

Author

Listed:
  • Røsjorde, A.
  • Kjelstrup, S.
  • Johannessen, E.
  • Hansen, R.

Abstract

We minimize the total entropy production of a process designed for dehydrogenation of propane. The process consists of 21 units, including a plug-flow reactor, a partial condenser, two tray distillation columns and a handful of heat exchangers and compressors. The units were modeled in a manner that made them relatively insensitive to changes in the molar flow rates, to make the optimization more flexible. The operating conditions, as well as to some degree the design of selected units, which minimized the total entropy production of the process, were found. The most important variables were the amount of recycled propane and propylene, conversion and selectivity in the reactor, as well as the number of tubes in the reactor. The optimal conversion, selectivity and recycle flows were results of a very clear trade-off among the entropy produced in the reactor, the partial condenser and the two distillation columns. Although several simplifying assumptions were made for computational reasons, this shows for the first time that it is also meaningful to use the entropy production as an objective function in chemical engineering process optimization studies.

Suggested Citation

  • Røsjorde, A. & Kjelstrup, S. & Johannessen, E. & Hansen, R., 2007. "Minimizing the entropy production in a chemical process for dehydrogenation of propane," Energy, Elsevier, vol. 32(4), pages 335-343.
  • Handle: RePEc:eee:energy:v:32:y:2007:i:4:p:335-343
    DOI: 10.1016/j.energy.2006.07.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544206002088
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2006.07.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Koeijer, Gelein & Johannessen, Eivind & Kjelstrup, Signe, 2004. "The second law optimal path of a four-bed SO2 converter with five heat exchangers," Energy, Elsevier, vol. 29(4), pages 525-546.
    2. Johannessen, Eivind & Kjelstrup, Signe, 2004. "Minimum entropy production rate in plug flow reactors: An optimal control problem solved for SO2 oxidation," Energy, Elsevier, vol. 29(12), pages 2403-2423.
    3. Toffolo, A. & Lazzaretto, A., 2002. "Evolutionary algorithms for multi-objective energetic and economic optimization in thermal system design," Energy, Elsevier, vol. 27(6), pages 549-567.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadi, Pouria & Dincer, Ibrahim, 2010. "Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA)," Energy, Elsevier, vol. 35(12), pages 5161-5172.
    2. Wang, Zhen & Duan, Liqiang & Zhang, Zuxian, 2022. "Multi-objective optimization of gas turbine combined cycle system considering environmental damage cost of pollution emissions," Energy, Elsevier, vol. 261(PA).
    3. Ahmadi, Mohammad H. & Amin Nabakhteh, Mohammad & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah & Bidi, Mokhtar, 2017. "Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell–Boltzmann gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 337-350.
    4. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
    5. Balli, Ozgur & Kale, Utku & Rohács, Dániel & Hikmet Karakoc, T., 2022. "Environmental damage cost and exergoenvironmental evaluations of piston prop aviation engines for the landing and take-off flight phases," Energy, Elsevier, vol. 261(PB).
    6. Sciacovelli, A. & Verda, V. & Sciubba, E., 2015. "Entropy generation analysis as a design tool—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1167-1181.
    7. Nondy, J. & Gogoi, T.K., 2021. "Performance comparison of multi-objective evolutionary algorithms for exergetic and exergoenvironomic optimization of a benchmark combined heat and power system," Energy, Elsevier, vol. 233(C).
    8. Naserabad, S. Nikbakht & Mehrpanahi, A. & Ahmadi, G., 2018. "Multi-objective optimization of HRSG configurations on the steam power plant repowering specifications," Energy, Elsevier, vol. 159(C), pages 277-293.
    9. Niknam, Taher & Narimani, Mohammad rasoul & Jabbari, Masoud & Malekpour, Ahmad Reza, 2011. "A modified shuffle frog leaping algorithm for multi-objective optimal power flow," Energy, Elsevier, vol. 36(11), pages 6420-6432.
    10. Ahmadi, Mohammad H. & Ahmadi, Mohammad-Ali & Maleki, Akbar & Pourfayaz, Fathollah & Bidi, Mokhtar & Açıkkalp, Emin, 2017. "Exergetic sustainability evaluation and multi-objective optimization of performance of an irreversible nanoscale Stirling refrigeration cycle operating with Maxwell–Boltzmann gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 80-92.
    11. Ahmadi, Mohammad H. & Ahmadi, Mohammad Ali & Pourfayaz, Fathollah & Hosseinzade, Hadi & Acıkkalp, Emin & Tlili, Iskander & Feidt, Michel, 2016. "Designing a powered combined Otto and Stirling cycle power plant through multi-objective optimization approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 585-595.
    12. Wang, Chao & Chen, Lingen & Xia, Shaojun & Sun, Fengrui, 2016. "Maximum production rate optimization for sulphuric acid decomposition process in tubular plug-flow reactor," Energy, Elsevier, vol. 99(C), pages 152-158.
    13. Kaluri, Ram Satish & Basak, Tanmay, 2011. "Entropy generation due to natural convection in discretely heated porous square cavities," Energy, Elsevier, vol. 36(8), pages 5065-5080.
    14. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    15. Mehmet Sait S ylemez, 2012. "Effect of the Energy Price Rate on Insulation Applications," International Journal of Energy Economics and Policy, Econjournals, vol. 2(3), pages 103-107.
    16. Seung-Hoon Park & Jung-Yeol Kim & Yong-Sung Jang & Eui-Jong Kim, 2017. "Development of a Multi-Objective Sizing Method for Borehole Heat Exchangers during the Early Design Phase," Sustainability, MDPI, vol. 9(10), pages 1-14, October.
    17. Mazur, V., 2009. "Fuzzy thermoeconomic optimization of energy-transforming systems," Applied Energy, Elsevier, vol. 84(7-8), pages 749-762, July.
    18. Manassaldi, Juan I. & Mussati, Sergio F. & Scenna, Nicolás J., 2011. "Optimal synthesis and design of Heat Recovery Steam Generation (HRSG) via mathematical programming," Energy, Elsevier, vol. 36(1), pages 475-485.
    19. Xia, Shaojun & Chen, Lingen & Sun, Fengrui, 2011. "Power-optimization of non-ideal energy converters under generalized convective heat transfer law via Hamilton-Jacobi-Bellman theory," Energy, Elsevier, vol. 36(1), pages 633-646.
    20. Dimopoulos, George G. & Frangopoulos, Christos A., 2008. "Optimization of energy systems based on Evolutionary and Social metaphors," Energy, Elsevier, vol. 33(2), pages 171-179.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:32:y:2007:i:4:p:335-343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.