IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v324y2025ics0360544225016536.html
   My bibliography  Save this article

Heat exchanger network synthesis with optimal waste heat recovery and multiple hot utilities

Author

Listed:
  • Yang, Zekun
  • Pan, Ting
  • Zhang, Nan
  • Smith, Robin

Abstract

Approaches for Heat Exchanger Network (HEN) synthesis have become increasingly significant in recent years because of their potential role in saving energy and tackling climate change. Unlike existing methods that rely on introducing additional stages to accommodate multiple utility options, while often neglecting the potential of waste heat recovery, this work proposes a novel mathematical optimization methodology to tackle the HEN synthesis problem and bring energy benefits of waste heat recovery. The method aims to overcome the drawbacks in existing methods related to low computational efficiency resulting from numerous discrete combinations. An enhanced stage-wise superstructure is presented to automatically optimize selections of stages covering waste heat recovery or heat recovery in hot streams, and multiple hot utilities or heat recovery in cold streams, formulated as a mixed-integer nonlinear programming (MINLP) problem. Grand composite curve (GCC) is adopted to implement preliminary simplifications for the superstructure to solve large-scale HEN problems, by cutting the inappropriate utilities according to the pinch method and minimum temperature driving force to eliminate redundant combinations. The results show that the proposed approach can provide cost-efficient solutions with lower total annual cost (TAC) due to significant reductions in energy cost, compared with previous works. Specifically, the proposed approach achieves TAC savings of 14.5 %, 3.15 %, and 4.5 % for Case 1, Case 2, and Case 3.

Suggested Citation

  • Yang, Zekun & Pan, Ting & Zhang, Nan & Smith, Robin, 2025. "Heat exchanger network synthesis with optimal waste heat recovery and multiple hot utilities," Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225016536
    DOI: 10.1016/j.energy.2025.136011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225016536
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wei & Shi, Wenxing & Li, Xianting & Wang, Baolong & Cao, Yang, 2020. "Application of optimization method based on discretized thermal energy in condensing heat recovery system of combined heat and power plant," Energy, Elsevier, vol. 213(C).
    2. Luo, Xianglong & Huang, Xiaojian & El-Halwagi, Mahmoud M. & Ponce-Ortega, José María & Chen, Ying, 2016. "Simultaneous synthesis of utility system and heat exchanger network incorporating steam condensate and boiler feedwater," Energy, Elsevier, vol. 113(C), pages 875-893.
    3. Bao, Zhongkai & Cui, Guoming & Chen, Jiaxing & Sun, Tao & Xiao, Yuan, 2018. "A novel random walk algorithm with compulsive evolution combined with an optimum-protection strategy for heat exchanger network synthesis," Energy, Elsevier, vol. 152(C), pages 694-708.
    4. Goh, Wui Seng & Wan, Yoke Kin & Tay, Chun Kiat & Ng, Rex T.L. & Ng, Denny K.S., 2016. "Automated targeting model for synthesis of heat exchanger network with utility systems," Applied Energy, Elsevier, vol. 162(C), pages 1272-1281.
    5. Ma, Jiaze & Chang, Chenglin & Wang, Yufei & Feng, Xiao, 2018. "Multi-objective optimization of multi-period interplant heat integration using steam system," Energy, Elsevier, vol. 159(C), pages 950-960.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao Sheng & Linlin Liu & Yu Zhuang & Lei Zhang & Jian Du, 2020. "Simultaneous Synthesis of Heat Exchanger Networks Considering Steam Supply and Various Steam Heater Locations," Energies, MDPI, vol. 13(6), pages 1-17, March.
    2. Xiao, Wu & Cheng, Andi & Li, Shuai & Jiang, Xiaobin & Ruan, Xuehua & He, Gaohong, 2021. "A multi-objective optimization strategy of steam power system to achieve standard emission and optimal economic by NSGA-Ⅱ," Energy, Elsevier, vol. 232(C).
    3. Boldyryev, Stanislav & Shamraev, Anatoly A. & Shamraeva, Elena O., 2021. "The design of the total site exchanger network with intermediate heat carriers: Theoretical insights and practical application," Energy, Elsevier, vol. 223(C).
    4. Huang, Xiaojian & Lu, Pei & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Liang, Yingzong & Wang, Chao & Chen, Ying, 2020. "Synthesis and simultaneous MINLP optimization of heat exchanger network, steam Rankine cycle, and organic Rankine cycle," Energy, Elsevier, vol. 195(C).
    5. Huang, Xiaojian & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Chen, Ying & María Ponce-Ortega, José & El-Halwagi, Mahmoud M., 2018. "Synthesis and dual-objective optimization of industrial combined heat and power plants compromising the water–energy nexus," Applied Energy, Elsevier, vol. 224(C), pages 448-468.
    6. Huang, Yongjian & Zhuang, Yu & Xing, Yafeng & Liu, Linlin & Du, Jian, 2023. "Multi-objective optimization for work-integrated heat exchange network coupled with interstage multiple utilities," Energy, Elsevier, vol. 273(C).
    7. Shen, Feifei & Zhao, Liang & Du, Wenli & Zhong, Weimin & Qian, Feng, 2020. "Large-scale industrial energy systems optimization under uncertainty: A data-driven robust optimization approach," Applied Energy, Elsevier, vol. 259(C).
    8. Halmschlager, Daniel & Beck, Anton & Knöttner, Sophie & Koller, Martin & Hofmann, René, 2022. "Combined optimization for retrofitting of heat recovery and thermal energy supply in industrial systems," Applied Energy, Elsevier, vol. 305(C).
    9. Luo, Xianglong & Huang, Xiaojian & El-Halwagi, Mahmoud M. & Ponce-Ortega, José María & Chen, Ying, 2016. "Simultaneous synthesis of utility system and heat exchanger network incorporating steam condensate and boiler feedwater," Energy, Elsevier, vol. 113(C), pages 875-893.
    10. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    11. Chang, Chenglin & Chen, Xiaolu & Wang, Yufei & Feng, Xiao, 2017. "Simultaneous optimization of multi-plant heat integration using intermediate fluid circles," Energy, Elsevier, vol. 121(C), pages 306-317.
    12. Zirngast, Klavdija & Kravanja, Zdravko & Novak Pintarič, Zorka, 2021. "An improved algorithm for synthesis of heat exchanger network with a large number of uncertain parameters," Energy, Elsevier, vol. 233(C).
    13. Zhang, Haitian & Feng, Xiao & Wang, Yufei & Zhang, Zhen, 2019. "Sequential optimization of cooler and pump networks with different types of cooling," Energy, Elsevier, vol. 179(C), pages 815-822.
    14. Pintarič, Zorka Novak & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Kravanja, Zdravko, 2019. "Multi-objective multi-period synthesis of energy efficient processes under variable environmental taxes," Energy, Elsevier, vol. 189(C).
    15. Migo-Sumagang, Maria Victoria & Aviso, Kathleen B. & Tapia, John Frederick D. & Tan, Raymond R., 2024. "P-graph and Monte Carlo simulation approach for sustainable and risk-managed CDR portfolios," Energy, Elsevier, vol. 310(C).
    16. Zhang, Zhaoyan & Jiang, Ping & Liu, Zhibin & Fu, Lei & Wang, Peiguang, 2023. "Capacity optimal configuration and collaborative planning of multi-region integrated energy system," Energy, Elsevier, vol. 278(PB).
    17. López-Flores, Francisco Javier & Hernández-Pérez, Luis Germán & Lira-Barragán, Luis Fernando & Rubio-Castro, Eusiel & Ponce-Ortega, José M., 2022. "Optimal Profit Distribution in Interplant Waste Heat Integration through a Hybrid Approach," Energy, Elsevier, vol. 253(C).
    18. Kamel, Dina A. & Gadalla, Mamdouh A. & Abdelaziz, Omar Y. & Labib, Mennat A. & Ashour, Fatma H., 2017. "Temperature driving force (TDF) curves for heat exchanger network retrofit – A case study and implications," Energy, Elsevier, vol. 123(C), pages 283-295.
    19. Shazed, Abdur Rahman & Ashraf, Hafsa M. & Katebah, Mary A. & Bouabidi, Zineb & Al-musleh, Easa I., 2021. "Overcoming the energy and environmental issues of LNG plants by using solid oxide fuel cells," Energy, Elsevier, vol. 218(C).
    20. Chen, Youliang & Huang, Xiaoguang & Li, Wei & Fan, Rong & Zi, Pingyang & Wang, Xin, 2023. "Application of deep learning modelling of the optimal operation conditions of auxiliary equipment of combined cycle gas turbine power station," Energy, Elsevier, vol. 285(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225016536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.