IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v324y2025ics0360544225016020.html
   My bibliography  Save this article

Experimental and numerical investigation of resistive load impact on oscillating water column wave energy converter integrated with a parabolic breakwater

Author

Listed:
  • Ning, Dezhi
  • Ding, Zhenyu
  • Mayon, Robert
  • Ruan, Haihui
  • Fu, Yiqiang

Abstract

The performance of an oscillating water column wave energy converter with a parabolic breakwater was investigated by Ding et al. [1] and Mayon et al. [2] using numerical and experimental methods. Building on their work, this study examines the effects of resistive load on the Wave-to-Wire (WTW) conversion process. A time-domain numerical model for the WTW energy conversion process was developed, in which an energy capture chamber, an impulse turbine, a three-phase permanent magnet synchronous generator, and an adjustable resistive load were included. The model achieved bidirectional coupling between the turbine, generator, and resistive load, facilitating comprehensive simulation of the entire dynamic process. The turbine operating mode transitioned from high-torque, low-speed mode, to low-torque, high-speed mode with increasing resistive load. The resistive load influences the energy conversion process between the turbine and generator. The power duty cycle is introduced as a new variable for assessing the continuous operating capability of the generator. An increase in resistive load significantly enhances its performance. The bidirectional turbine improves the power generation capacity of the system compared with the unidirectional turbine, with a 43 % power increment when the resistive load is 5 Ω. This increase in power was positively correlated with the resistive load.

Suggested Citation

  • Ning, Dezhi & Ding, Zhenyu & Mayon, Robert & Ruan, Haihui & Fu, Yiqiang, 2025. "Experimental and numerical investigation of resistive load impact on oscillating water column wave energy converter integrated with a parabolic breakwater," Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225016020
    DOI: 10.1016/j.energy.2025.135960
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225016020
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135960?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Palha, Artur & Mendes, Lourenço & Fortes, Conceição Juana & Brito-Melo, Ana & Sarmento, António, 2010. "The impact of wave energy farms in the shoreline wave climate: Portuguese pilot zone case study using Pelamis energy wave devices," Renewable Energy, Elsevier, vol. 35(1), pages 62-77.
    2. Rodríguez, Laudino & Pereiras, Bruno & Fernández-Oro, Jesús & Castro, Francisco, 2019. "Optimization and experimental tests of a centrifugal turbine for an OWC device equipped with a twin turbines configuration," Energy, Elsevier, vol. 171(C), pages 710-720.
    3. Ding, Zhen-yu & Ning, De-zhi & Mayon, Robert, 2025. "Wave-to-wire model for an oscillating water column wave energy converter," Applied Energy, Elsevier, vol. 377(PC).
    4. Clément, Alain & McCullen, Pat & Falcão, António & Fiorentino, Antonio & Gardner, Fred & Hammarlund, Karin & Lemonis, George & Lewis, Tony & Nielsen, Kim & Petroncini, Simona & Pontes, M. -Teresa & Sc, 2002. "Wave energy in Europe: current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(5), pages 405-431, October.
    5. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
    6. Pelc, Robin & Fujita, Rod M., 2002. "Renewable energy from the ocean," Marine Policy, Elsevier, vol. 26(6), pages 471-479, November.
    7. Guo, Peng & Zhang, Yongliang & Chen, Wenchuang & Wang, Chen, 2024. "Fully coupled simulation of dynamic characteristics of a backward bent duct buoy oscillating water column wave energy converter," Energy, Elsevier, vol. 294(C).
    8. Ciappi, Lorenzo & Cheli, Lapo & Simonetti, Irene & Bianchini, Alessandro & Talluri, Lorenzo & Cappietti, Lorenzo & Manfrida, Giampaolo, 2022. "Wave-to-wire models of wells and impulse turbines for oscillating water column wave energy converters operating in the Mediterranean Sea," Energy, Elsevier, vol. 238(PA).
    9. Lehmann, Marcus & Karimpour, Farid & Goudey, Clifford A. & Jacobson, Paul T. & Alam, Mohammad-Reza, 2017. "Ocean wave energy in the United States: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1300-1313.
    10. García-Díaz, Manuel & Pereiras, Bruno & Miguel-González, Celia & Rodríguez, Laudino & Fernández-Oro, Jesús, 2021. "Design of a new turbine for OWC wave energy converters: The DDT concept," Renewable Energy, Elsevier, vol. 169(C), pages 404-413.
    11. Iglesias, G. & Carballo, R., 2014. "Wave farm impact: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 69(C), pages 375-385.
    12. Setoguchi, T & Santhakumar, S & Maeda, H & Takao, M & Kaneko, K, 2001. "A review of impulse turbines for wave energy conversion," Renewable Energy, Elsevier, vol. 23(2), pages 261-292.
    13. Dezhi Ning & Rongquan Wang & Chongwei Zhang, 2017. "Numerical Simulation of a Dual-Chamber Oscillating Water Column Wave Energy Converter," Sustainability, MDPI, vol. 9(9), pages 1-12, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Zhen-yu & Ning, De-zhi & Mayon, Robert, 2025. "Wave-to-wire model for an oscillating water column wave energy converter," Applied Energy, Elsevier, vol. 377(PC).
    2. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
    3. Galparsoro, I. & Korta, M. & Subirana, I. & Borja, Á. & Menchaca, I. & Solaun, O. & Muxika, I. & Iglesias, G. & Bald, J., 2021. "A new framework and tool for ecological risk assessment of wave energy converters projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Manuel García-Díaz & Bruno Pereiras & Celia Miguel-González & Laudino Rodríguez & Jesús Fernández-Oro, 2021. "CFD Analysis of the Performance of a Double Decker Turbine for Wave Energy Conversion," Energies, MDPI, vol. 14(4), pages 1-19, February.
    5. Wang, Chen & Zhang, Yongliang & Xu, Haochun & Guo, Peng & Yang, Huanbin, 2025. "Enhancing power conversion via wave-guiding walls for an oscillating water column device integrated into a straight coast: Normal and oblique wave incidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    6. Choupin, O. & Pinheiro Andutta, F. & Etemad-Shahidi, A. & Tomlinson, R., 2021. "A decision-making process for wave energy converter and location pairing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    7. Astariz, S. & Iglesias, G., 2016. "Co-located wind and wave energy farms: Uniformly distributed arrays," Energy, Elsevier, vol. 113(C), pages 497-508.
    8. Abanades, J. & Greaves, D. & Iglesias, G., 2015. "Coastal defence using wave farms: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 75(C), pages 572-582.
    9. Sharay Astariz & Gregorio Iglesias, 2015. "Enhancing Wave Energy Competitiveness through Co-Located Wind and Wave Energy Farms. A Review on the Shadow Effect," Energies, MDPI, vol. 8(7), pages 1-23, July.
    10. Nasrollahi, Sadaf & Kazemi, Aliyeh & Jahangir, Mohammad-Hossein & Aryaee, Sara, 2023. "Selecting suitable wave energy technology for sustainable development, an MCDM approach," Renewable Energy, Elsevier, vol. 202(C), pages 756-772.
    11. Li, Hai & Shi, Xiaodan & Kong, Weihua & Kong, Lingji & Hu, Yongli & Wu, Xiaoping & Pan, Hongye & Zhang, Zutao & Pan, Yajia & Yan, Jinyue, 2025. "Advanced wave energy conversion technologies for sustainable and smart sea: A comprehensive review," Renewable Energy, Elsevier, vol. 238(C).
    12. Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
    13. Cui, Lin & Zheng, Siming & Zhang, Yongliang & Miles, Jon & Iglesias, Gregorio, 2021. "Wave power extraction from a hybrid oscillating water column-oscillating buoy wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Lorenzo Ciappi & Lapo Cheli & Irene Simonetti & Alessandro Bianchini & Giampaolo Manfrida & Lorenzo Cappietti, 2020. "Wave-to-Wire Model of an Oscillating-Water-Column Wave Energy Converter and Its Application to Mediterranean Energy Hot-Spots," Energies, MDPI, vol. 13(21), pages 1-28, October.
    15. Liu, Hua & Wang, Weijun & Wen, Yadong & Mao, Longbo & Wang, Wenqiang & Mi, Hongju, 2019. "A novel axial flow self-rectifying turbine for use in wave energy converters," Energy, Elsevier, vol. 189(C).
    16. Tunde Aderinto & Hua Li, 2020. "Effect of Spatial and Temporal Resolution Data on Design and Power Capture of a Heaving Point Absorber," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    17. Licheri, Fabio & Ghisu, Tiziano & Cambuli, Francesco & Puddu, Pierpaolo, 2022. "Detailed investigation of the local flow-field in a Wells turbine coupled to an OWC simulator," Renewable Energy, Elsevier, vol. 197(C), pages 583-593.
    18. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    19. Lavidas, George, 2019. "Energy and socio-economic benefits from the development of wave energy in Greece," Renewable Energy, Elsevier, vol. 132(C), pages 1290-1300.
    20. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225016020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.