IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v322y2025ics0360544225013921.html
   My bibliography  Save this article

Optimizing thermal performance of hollow cylindrical latent heat storage units: Insights into geometry-driven heat transfer enhancements

Author

Listed:
  • Yan, Zhongjun
  • Liu, Zhengxuan
  • Luo, Yongqiang
  • Pan, Shulin
  • Chen, Wang
  • Zhang, Yuan
  • Liang, Ke

Abstract

The thermal performance of cylindrical latent heat storage units (C-LHSUs) in hot water tanks can be improved by using a hollow geometry structure, which effectively reduces the average distance between the heated/cooled wall and the solid-liquid interface during the charging and discharging process. To comprehensively evaluate this improvement, an unconstrained melting model for phase change materials (PCMs) was developed, enabling detailed investigation of the thermal behavior of hollow geometry LHSUs (H-LHSUs). Moreover, the impact of the ratio between the inner hollow tube radius (r) and outer tube radius (R) on the charging/discharging performance of H-LHSUs was analyzed. The results demonstrated substantial enhancements in heat transfer performance for H-LHSUs compared to conventional C-LHSUs. Specifically, the average heat transfer coefficient increased by 82.9 % during charging and 176.47 % during discharging. This improvement translated to a charging rate that was 2.46 times and a discharging rate that was 3.9 times higher than those of the C-LHSU. Furthermore, the study revealed that as the r/R ratio increased, both charging and discharging rates improved significantly, with the rate of heat transfer enhancement becoming more pronounced at higher r/R values. This research provides actionable insights for optimizing the design of LHSUs in practical applications. It underscores the importance of balancing thermal performance gains with the associated capital costs when selecting the optimal r/R ratio. The findings contribute to the advancement of energy storage technologies, offering a robust framework for improving the efficiency of thermal energy systems in hot water tanks.

Suggested Citation

  • Yan, Zhongjun & Liu, Zhengxuan & Luo, Yongqiang & Pan, Shulin & Chen, Wang & Zhang, Yuan & Liang, Ke, 2025. "Optimizing thermal performance of hollow cylindrical latent heat storage units: Insights into geometry-driven heat transfer enhancements," Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225013921
    DOI: 10.1016/j.energy.2025.135750
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225013921
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135750?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Xiao & Han, Liang & Lu, Yunfeng & Wei, Fei & Jia, Xilai, 2019. "Geometry-induced thermal storage enhancement of shape-stabilized phase change materials based on oriented carbon nanotubes," Applied Energy, Elsevier, vol. 254(C).
    2. Xiao, X. & Zhang, P., 2015. "Numerical and experimental study of heat transfer characteristics of a shell-tube latent heat storage system: Part II – Discharging process," Energy, Elsevier, vol. 80(C), pages 177-189.
    3. Najafpour, Nategheh & Adibi, Omid, 2024. "Investigating the effects of nano-enhanced phase change material on melting performance of LHTES with novel perforated hybrid stair fins," Energy, Elsevier, vol. 290(C).
    4. Yan, Zhongjun & Zhu, Yuexiang & Liu, Lifang & Yu, Zhun (Jerry) & Li, Shuisheng & Zhang, Guoqiang, 2023. "Performance enhancement of cylindrical latent heat storage units in hot water tanks via wavy design," Renewable Energy, Elsevier, vol. 218(C).
    5. Xiao, X. & Zhang, P., 2015. "Numerical and experimental study of heat transfer characteristics of a shell-tube latent heat storage system: Part I – Charging process," Energy, Elsevier, vol. 79(C), pages 337-350.
    6. Liu, Zhengxuan & Yu, Zhun (Jerry) & Yang, Tingting & Roccamena, Letizia & Sun, Pengcheng & Li, Shuisheng & Zhang, Guoqiang & El Mankibi, Mohamed, 2019. "Numerical modeling and parametric study of a vertical earth-to-air heat exchanger system," Energy, Elsevier, vol. 172(C), pages 220-231.
    7. Spengler, Fernando Claudio & Oliveski, Rejane De Césaro & Eberhardt, Gabriel Eduardo Strohm, 2022. "Effect of proportions of fins with radial branches on the lauric acid melting process in an annular cavity," Energy, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amirifard, Masoumeh & Kasaeian, Alibakhsh & Amidpour, Majid, 2018. "Integration of a solar pond with a latent heat storage system," Renewable Energy, Elsevier, vol. 125(C), pages 682-693.
    2. Diao, Yanhua & Kang, Yameng & Liang, Lin & Zhao, Yaohua & Zhu, Tingting, 2017. "Experimental investigation on the heat transfer performance of a latent thermal energy storage device based on flat miniature heat pipe arrays," Energy, Elsevier, vol. 138(C), pages 929-941.
    3. Zhao, Y. & You, Y. & Liu, H.B. & Zhao, C.Y. & Xu, Z.G., 2018. "Experimental study on the thermodynamic performance of cascaded latent heat storage in the heat charging process," Energy, Elsevier, vol. 157(C), pages 690-706.
    4. Meng, Z.N. & Zhang, P., 2017. "Experimental and numerical investigation of a tube-in-tank latent thermal energy storage unit using composite PCM," Applied Energy, Elsevier, vol. 190(C), pages 524-539.
    5. Xiao, Xin & Jia, Hongwei & Wen, Dongsheng & Zhao, Xudong, 2020. "Thermal performance analysis of a solar energy storage unit encapsulated with HITEC salt/copper foam/nanoparticles composite," Energy, Elsevier, vol. 192(C).
    6. Xu, Tianhao & Gunasekara, Saman Nimali & Chiu, Justin Ningwei & Palm, Björn & Sawalha, Samer, 2020. "Thermal behavior of a sodium acetate trihydrate-based PCM: T-history and full-scale tests," Applied Energy, Elsevier, vol. 261(C).
    7. Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
    8. Song, Yanlin & Zhang, Nan & Jing, Yaoge & Cao, Xiaoling & Yuan, Yanping & Haghighat, Fariborz, 2019. "Experimental and numerical investigation on dodecane/expanded graphite shape-stabilized phase change material for cold energy storage," Energy, Elsevier, vol. 189(C).
    9. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Diarce, Gonzalo & Taylor, Robert A., 2019. "An improved, generalized effective thermal conductivity method for rapid design of high temperature shell-and-tube latent heat thermal energy storage systems," Renewable Energy, Elsevier, vol. 132(C), pages 694-708.
    10. Merlin, Kevin & Soto, Jérôme & Delaunay, Didier & Traonvouez, Luc, 2016. "Industrial waste heat recovery using an enhanced conductivity latent heat thermal energy storage," Applied Energy, Elsevier, vol. 183(C), pages 491-503.
    11. Liu, Zichu & Quan, Zhenhua & Zhao, Yaohua & Jing, Heran & Wang, Lincheng & Liu, Xin, 2022. "Numerical research on the solidification heat transfer characteristics of ice thermal storage device based on a compact multichannel flat tube-closed rectangular fin heat exchanger," Energy, Elsevier, vol. 239(PD).
    12. Xun Yang & Teng Xiong & Jing Liang Dong & Wen Xin Li & Yong Wang, 2017. "Investigation of the Dynamic Melting Process in a Thermal Energy Storage Unit Using a Helical Coil Heat Exchanger," Energies, MDPI, vol. 10(8), pages 1-18, August.
    13. Wang, Kai & Yan, Ting & Zhao, Y.M. & Li, G.D. & Pan, W.G., 2022. "Preparation and thermal properties of palmitic acid @ZnO/Expanded graphite composite phase change material for heat storage," Energy, Elsevier, vol. 242(C).
    14. Wang, H.N. & Xue, X.J. & Zhao, C.Y., 2024. "Performance analysis on combined energy supply system based on Carnot battery with packed-bed thermal energy storage," Renewable Energy, Elsevier, vol. 228(C).
    15. Li, Xiao-Yan & Yang, Liu & Wang, Xue-Lei & Miao, Xin-Yue & Yao, Yu & Qiang, Qiu-Qiu, 2018. "Investigation on the charging process of a multi-PCM latent heat thermal energy storage unit for use in conventional air-conditioning systems," Energy, Elsevier, vol. 150(C), pages 591-600.
    16. Wang, C. & Zhu, Y., 2018. "Entransy analysis on optimization of a double-stage latent heat storage unit with the consideration of an unequal separation," Energy, Elsevier, vol. 148(C), pages 386-396.
    17. Matthias Singer & Michael Fischlschweiger & Tim Zeiner, 2023. "Investigation of the Heat Storage Capacity and Storage Dynamics of a Novel Polymeric Macro-Encapsulated Core-Shell Particle Using a Paraffinic Core," Energies, MDPI, vol. 16(2), pages 1-14, January.
    18. Kirincic, Mateo & Trp, Anica & Lenic, Kristian, 2021. "Influence of natural convection during melting and solidification of paraffin in a longitudinally finned shell-and-tube latent thermal energy storage on the applicability of developed numerical models," Renewable Energy, Elsevier, vol. 179(C), pages 1329-1344.
    19. Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Tao, Y.B. & Carey, V.P., 2016. "Effects of PCM thermophysical properties on thermal storage performance of a shell-and-tube latent heat storage unit," Applied Energy, Elsevier, vol. 179(C), pages 203-210.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225013921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.