IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225008436.html
   My bibliography  Save this article

Combined influence of injection pressure of gasoline direct-injected and ratio of ethanol port-injected on the performances in a spark-ignited ethanol port-injected plus gasoline direct-injected engine

Author

Listed:
  • Gong, Changming
  • Huang, Wei
  • Liu, Fenghua

Abstract

Combined influences of injection pressure of gasoline direct-injected (IPgdi) and ratio of ethanol port-injected (Repi) on the performances in a spark-ignited ethanol port-injected plus gasoline direct-injected engine were investigated by experimentally. Four IPgdi of 8, 10, 12 and 14 MPa and three Repi of 0 %, 20 % and 40 % were tested at the engine speed of 1500 rpm, throttle opening of 10 % and excess air coefficient of 1.0. The study results show that increasing IPgdi and Repi had a efficiently influence on combustion performance and emissions. The influence of increasing Repi on the quality of mixture formation, the highest cylinder pressure, the highest heat release rate and the highest cylinder temperature at low IPgdi was greater than that at high IPgdi. Increasing IPgdi and Repi could obviously reduce ignition delay, combustion duration and coefficient of variation. The IPgdi had obviously influence on the CO, HC and NOX emissions in without ethanol port-injected, and high Repi had significantly influence on the CO, HC and NOX emissions compared to increasing IPgdi. The soot emission at IPgdi = 14 MPa and Repi = 40 % was around 89.8 % lower than that IPgdi = 8 MPa and Repi = 0 %. Therefore, increasing IPgdi and Repi could effectively reduce the soot emission.

Suggested Citation

  • Gong, Changming & Huang, Wei & Liu, Fenghua, 2025. "Combined influence of injection pressure of gasoline direct-injected and ratio of ethanol port-injected on the performances in a spark-ignited ethanol port-injected plus gasoline direct-injected engin," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008436
    DOI: 10.1016/j.energy.2025.135201
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225008436
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135201?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Cheng & Lei, Jian & Tian, Guohong & Ma, Zedong & Yang, Xiyu & Zhu, Jian, 2025. "Numerical investigation on recess geometry amelioration of an ammonia-hydrogen zero-carbon Wankel engine," Renewable Energy, Elsevier, vol. 242(C).
    2. Lee, Ziyoung & Park, Sungwook, 2020. "Particulate and gaseous emissions from a direct-injection spark ignition engine fueled with bioethanol and gasoline blends at ultra-high injection pressure," Renewable Energy, Elsevier, vol. 149(C), pages 80-90.
    3. Shi, Cheng & Cheng, Tengfei & Yang, Xiyu & Zhang, Zheng & Duan, Ruiling & Li, Xujia, 2024. "Implementation of various injection rate shapes in an ammonia/diesel dual-fuel engine with special emphasis on combustion and emissions characteristics," Energy, Elsevier, vol. 304(C).
    4. Gong, Changming & Huang, Wei & Liu, Fenghua, 2025. "Optimization of ethanol injected ratio of a stoichiometric spark-ignited ethanol port-injected plus gasoline direct-injected engine at various throttle openings," Energy, Elsevier, vol. 316(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Xiaodong & Cui, Huasheng & Nie, Fuquan & Feng, Huihua & Jia, Boru & Zuo, Zhengxing & Wang, Yahui & Qu, Zhipeng, 2025. "Study on the influence of operating stroke on combustion and emission characteristics of opposed single-cylinder free piston generator under direct injection," Energy, Elsevier, vol. 317(C).
    2. Shi, Cheng & Duan, Ruiling & Cheng, Tengfei & Nie, Fuquan & Yan, Xiaodong & Zhu, Jian, 2025. "Understanding the role of ammonia combined injection in improving combustion and emissions characteristics for heavy-duty CI engine," Energy, Elsevier, vol. 324(C).
    3. Yang, Xiyu & Yang, Fangliang & Dong, Quan & Shi, Cheng & Li, Nan & Zhang, Liang, 2025. "The study based on hydrogen-diesel co-direct injection system: A correction algorithm for circulating gas injection mass," Energy, Elsevier, vol. 319(C).
    4. Bao, Jianhui & Lei, Jian & Tian, Guohong & Wang, Xiaomeng & Wang, Huaiyu & Shi, Cheng, 2024. "A review of the application development and key technologies of rotary engines under the background of carbon neutrality," Energy, Elsevier, vol. 311(C).
    5. Li, Xiaoyan & Zhen, Xudong & Wang, Yang & Tian, Zhi, 2022. "Numerical comparative study on performance and emissions characteristics fueled with methanol, ethanol and methane in high compression spark ignition engine," Energy, Elsevier, vol. 254(PA).
    6. Cheng, Tengfei & Duan, Ruiling & Li, Xueyi & Yan, Xiaodong & Yang, Xiyu & Shi, Cheng, 2025. "Progressive split injection strategies to combustion and emissions improvement of a heavy-duty diesel engine with ammonia enrichment," Energy, Elsevier, vol. 316(C).
    7. Liu, Xiangtao & Si, Jicang & Wang, Guochang & Wu, Mengwei & Mi, Jianchun, 2025. "Nitrogen sources and formation routes of nitric oxide from pure ammonia combustion," Energy, Elsevier, vol. 315(C).
    8. Lei, Jian & Chai, Sen & Tian, Guohong & Liu, Hua & Yang, Xiyu & Shi, Cheng, 2024. "Understanding the role of methanol as a blended fuel on combustion behavior for rotary engine operations," Energy, Elsevier, vol. 307(C).
    9. Meng, Xianglong & Xie, Fangxi & Liu, Yu & Yu, Zhenbo & Jiang, Yunfeng & Wang, Zhaoyu & Wang, Xiangyang & Jin, Zhaohui, 2025. "Effects of ammonia addition and variable valve timing on knocking and performance of ethanol pre-chamber engine with high compression ratio," Energy, Elsevier, vol. 327(C).
    10. Liang, Zhendong & Xie, Fangxi & Li, Qian & Su, Yan & Wang, Zhongshu & Dou, Huili & Li, Xiaoping, 2024. "Co-optimization and prediction of high-efficiency combustion and zero-carbon emission at part load in the hydrogen direct injection engine based on VVT, split injection and ANN," Energy, Elsevier, vol. 308(C).
    11. Lei, Qiming & Wang, Hu & Yan, Xiaodong & Feng, Huihua & Jia, Boru & Wang, Jiayu & Xia, Longbin, 2025. "Investigation into the application of turbulent jet ignition in the operational process of free piston engine generators," Energy, Elsevier, vol. 327(C).
    12. Ji, Changwei & Deng, Yutao & Yang, Jinxin & Zambalov, Sergey & Kasaev, Dmitry, 2025. "Numerical study on the effects of spark plug position and ignition timing on the performance of hydrogen direct-injection oval rotary engine under different excess air ratio conditions," Energy, Elsevier, vol. 314(C).
    13. Xiang Li & Siyue Liu & Wanzhong Li & Yiqiang Pei & Xuewen Zhang & Peiyong Ni & Zhijun Peng & Chenxi Wang, 2024. "Optimising the Particulate Emission Characteristics of a Dual-Fuel Spark Ignition Engine by Changing the Gasoline Direct Injection Strategy," Sustainability, MDPI, vol. 16(19), pages 1-16, October.
    14. Jing, Qi & Xu, Houjia & Yang, Zhiyuan & Wang, Dan & Li, Yuntao & Zhang, Laibin, 2025. "The influence of jet medium disturbance on combustion of hydrogen-doped natural gas in low temperature environment," Renewable Energy, Elsevier, vol. 245(C).
    15. Yang, Xiyu & Yang, Fangliang & Li, Nan & Zhang, Liang & Lei, Jian & Shi, Cheng & Bai, Yun & Dong, Quan, 2024. "Study on prediction of gas injection mass fluctuation for hydrogen-diesel co-direct injection system: A prediction algorithm driven by model and perception iterative," Energy, Elsevier, vol. 308(C).
    16. Sun, Bo & Wang, Yuyao & Shi, Cheng & Nie, Fuquan & Yan, Xiaodong, 2025. "Combined effect of chamber geometry and compression ratio on the combustion process in a methanol-enriched rotary engine," Energy, Elsevier, vol. 318(C).
    17. Fan, Lulu & Shi, Weishuo & Jing, Jun & Dong, Zhenhua & Yuan, Jinwei & Qu, Lingbo, 2025. "An artificial intelligence strategy for multi-objective optimization of Urea-SCR for vehicle diesel engine by RSM-VIKOR," Energy, Elsevier, vol. 317(C).
    18. Meng, Hao & Zhan, Qiang & Ji, Changwei & Yang, Jinxin & Wang, Shuofeng, 2025. "Comprehensive multi-performance research of hydrogen-fueled Wankel rotary engine by experimental and data-driven methods," Energy, Elsevier, vol. 319(C).
    19. Lei, Jian & Zhang, Shiqi & Bao, Jianhui & Xin, Gu & Yang, Xiyu & Shi, Cheng, 2025. "The low-carbon transition of rotary engines: Potential and challenges of alcohol fuels," Energy, Elsevier, vol. 320(C).
    20. Cui, Jingchen & Chen, Weize & Wang, Bing & Fan, Yuanzhi & Tian, Hua & Long, Wuqiang & Liu, Xing, 2024. "Effects of relative position of injectors on the performance of ammonia/diesel two-stroke engines," Energy, Elsevier, vol. 309(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.