IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225005742.html
   My bibliography  Save this article

Design of packaged thermoelectric generators for implantable medical devices: A comprehensive parameter study

Author

Listed:
  • Rao, Yongchen
  • Bechtold, Tamara
  • Hohlfeld, Dennis

Abstract

Implantable thermoelectric generators (TEGs) have the potential to revolutionize healthcare by providing sustainable power for medical devices within the human body. However, a critical knowledge gap exists regarding their performance within the complex thermal environment of the body. This study addresses this gap by developing human torso and head models that incorporate bioheat effects, such as blood perfusion and metabolism. These models enable a comprehensive assessment of TEG performance in a realistic biological setting. A thorough numerical analysis was conducted to study the influence of various design parameters (thermopile configuration, packaging, implant locations, etc.) on TEG performance. Simulation results underscored the critical importance of achieving thermal matching between the TEG and its implantation site, alongside electrical load matching for maximizing power output. Additionally, we explored trade-offs among power output, miniaturization, hermeticity, and manufacturability. Simulations revealed that TEGs implanted in regions with thicker fat layers in the torso generated higher power. An optimized TEG with a 50 mm diameter and 15% fill factor, implanted in the chest with 14 mm of fat, produced 118μW. For cranial implantation in the head, a 30 mm diameter TEG generated 66 μW, increasing to 91μW with a 50 mm diameter heat spreader. The findings culminate in a proposed design guideline to aid the development of high-performance implantable TEGs.

Suggested Citation

  • Rao, Yongchen & Bechtold, Tamara & Hohlfeld, Dennis, 2025. "Design of packaged thermoelectric generators for implantable medical devices: A comprehensive parameter study," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225005742
    DOI: 10.1016/j.energy.2025.134932
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225005742
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134932?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Tailin, Li & Youhong, Liu & Yingzeng, Zhang & Haodong, Chen & Qingpei, Xiang & Jun, Zeng & Rende, Ze & Yi, Liu & Yongchun, Xiang, 2023. "Comprehensive modeling and characterization of Chang'E-4 radioisotope thermoelectric generator for lunar mission," Applied Energy, Elsevier, vol. 336(C).
    2. Hasan, Mohammed Nazibul & Nayan, Nafarizal & Nafea, Marwan & Muthalif, Asan G.A. & Mohamed Ali, Mohamed Sultan, 2022. "Novel structural design of wearable thermoelectric generator with vertically oriented thermoelements," Energy, Elsevier, vol. 259(C).
    3. Byeongmoon Lee & Hyeon Cho & Kyung Tae Park & Jin-Sang Kim & Min Park & Heesuk Kim & Yongtaek Hong & Seungjun Chung, 2020. "High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    4. Lv, Jin-Ran & Ma, Jin-Lei & Dai, Lu & Yin, Tao & He, Zhi-Zhu, 2022. "A high-performance wearable thermoelectric generator with comprehensive optimization of thermal resistance and voltage boosting conversion," Applied Energy, Elsevier, vol. 312(C).
    5. López Tobi, Iho & Comamala, Martí & Montoro, Lino & González, Josep Ramon & Czarnigowski, Jacek & Gómez, Arantzazu, 2024. "Feasible application of thermoelectric generators in light aviation," Energy, Elsevier, vol. 313(C).
    6. Park, Gimin & Kim, Jiyong & Woo, Seungjai & Yu, Jinwoo & Khan, Salman & Kim, Sang Kyu & Lee, Hotaik & Lee, Soyoung & Kwon, Boksoon & Kim, Woochul, 2022. "Modeling heat transfer in humans for body heat harvesting and personal thermal management," Applied Energy, Elsevier, vol. 323(C).
    7. He, Hongxi & Xie, Yongchuan & Zuo, Qingsong & Chen, Wei & Shen, Zhuang & Ma, Ying & Zhang, Hehui & Zhu, Guohui & Ouyang, Yixuan, 2024. "Optimization analysis for thermoelectric performance improvement of biconical segmented annular thermoelectric generator," Energy, Elsevier, vol. 306(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Farooq & Kim, Dong Hyun & Lee, Jinwoo, 2025. "Functionalized materials and geometric designs of thermoelectric devices for smart wearable applications," Applied Energy, Elsevier, vol. 379(C).
    2. Lei Miao & Sijing Zhu & Chengyan Liu & Jie Gao & Zhongwei Zhang & Ying Peng & Jun-Liang Chen & Yangfan Gao & Jisheng Liang & Takao Mori, 2024. "Comfortable wearable thermoelectric generator with high output power," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Luo, Ding & Liu, Zerui & Cao, Jin & Yan, Yuying & Cao, Bingyang, 2024. "Performance investigation and optimization of an L-type thermoelectric generator," Energy, Elsevier, vol. 307(C).
    4. Yuan, Hengfeng & Qing, Shaowei & Ren, Shangkun & Rezania, Alireza & Rosendahl, Lasse & Wen, Xiankui & Zhong, Jingliang & Gou, Xiaolong & Tang, Shengli & E, Peng, 2023. "Modelling and optimization analysis of a novel hollow flexible-filler-based bulk thermoelectric generator for human body sensor," Energy, Elsevier, vol. 281(C).
    5. Yang, Shuo & Chen, Hao & Yang, Xuelin & Luo, Ding, 2025. "Design optimization of split fins in heat pipe-based thermoelectric generators," Energy, Elsevier, vol. 322(C).
    6. Park, Junyoung & Yu, Hyun & Bang, Ki Mun & Kim, Woochul & Jin, Hyungyu, 2025. "Additive-manufactured topology-optimized heat sinks for enhancing thermoelectric generator conversion efficiency," Energy, Elsevier, vol. 320(C).
    7. Luo, Ding & Zhang, Haokang & Cao, Jin & Yan, Yuyin & Cao, Bingyang, 2024. "Numerical investigation and optimization of a hexagonal thermoelectric generator with diverging fins for exhaust waste heat recovery," Energy, Elsevier, vol. 301(C).
    8. Maduabuchi, Chika & Okoli, Kingsley, 2024. "Transient real-weather 4E optimization of two-stage segmented thermoelectric generators for enhanced solar energy conversion," Applied Energy, Elsevier, vol. 373(C).
    9. Yijie Liu & Xiaodong Wang & Shuaihang Hou & Zuoxu Wu & Jian Wang & Jun Mao & Qian Zhang & Zhiguo Liu & Feng Cao, 2023. "Scalable-produced 3D elastic thermoelectric network for body heat harvesting," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Wielgosz, Sarah E. & Clifford, Corey E. & Yu, Kevin & Barry, Matthew M., 2023. "Fully–coupled thermal–electric modeling of thermoelectric generators," Energy, Elsevier, vol. 266(C).
    11. Diana Enescu, 2024. "Heat Transfer Mechanisms and Contributions of Wearable Thermoelectrics to Personal Thermal Management," Energies, MDPI, vol. 17(2), pages 1-29, January.
    12. Sadeq Hooshmand Zaferani & Mehdi Jafarian & Daryoosh Vashaee & Reza Ghomashchi, 2021. "Thermal Management Systems and Waste Heat Recycling by Thermoelectric Generators—An Overview," Energies, MDPI, vol. 14(18), pages 1-21, September.
    13. Wei, Haoxiang & Zhang, Jian & Han, Yang & Xu, Dongyan, 2022. "Soft-covered wearable thermoelectric device for body heat harvesting and on-skin cooling," Applied Energy, Elsevier, vol. 326(C).
    14. Li Yang & Xue Chen & Ankan Dutta & Hui Zhang & Zihan Wang & Mingyang Xin & Shuaijie Du & Guizhi Xu & Huanyu Cheng, 2025. "Thermoelectric porous laser-induced graphene-based strain-temperature decoupling and self-powered sensing," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    15. Xiong, Kaixiao & Fan, Chengliang & He, Deqiang & Chen, Hongyu & Zhao, Xinyi & Feng, Xihui & Zhang, Zutao & Wu, Xiaoping, 2025. "A wearable driver gesture recognition system enabled AI application in virtual reality interaction for smart traffic," Energy, Elsevier, vol. 327(C).
    16. Yusuf, Aminu & Garcia, Davide Astiaso, 2023. "Energy, exergy, economic, and environmental (4E) analyses of bifacial concentrated thermoelectric-photovoltaic systems," Energy, Elsevier, vol. 282(C).
    17. Yan Liu & Qihao Zhang & Aibin Huang & Keyi Zhang & Shun Wan & Hongyi Chen & Yuntian Fu & Wusheng Zuo & Yongzhe Wang & Xun Cao & Lianjun Wang & Uli Lemmer & Wan Jiang, 2024. "Fully inkjet-printed Ag2Se flexible thermoelectric devices for sustainable power generation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Lv, Jin-Ran & Ma, Jin-Lei & Dai, Lu & Yin, Tao & He, Zhi-Zhu, 2022. "A high-performance wearable thermoelectric generator with comprehensive optimization of thermal resistance and voltage boosting conversion," Applied Energy, Elsevier, vol. 312(C).
    19. Tian, Yu & Ren, Guang-Kun & Wei, Zhijie & Zheng, Zhe & Deng, Shunjie & Ma, Li & Li, Yuansen & Zhou, Zhifang & Chen, Xiaohong & Shi, Yan & Lin, Yuan-Hua, 2024. "Advances of thermoelectric power generation for room temperature: Applications, devices, materials and beyond," Renewable Energy, Elsevier, vol. 226(C).
    20. Seung-Han Kang & Jeong-Wan Jo & Jong Min Lee & Sanghee Moon & Seung Bum Shin & Su Bin Choi & Donghwan Byeon & Jaehyun Kim & Myung-Gil Kim & Yong-Hoon Kim & Jong-Woong Kim & Sung Kyu Park, 2024. "Full integration of highly stretchable inorganic transistors and circuits within molecular-tailored elastic substrates on a large scale," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225005742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.