IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v319y2025ics0360544225007807.html
   My bibliography  Save this article

Controllable joint forecast of oversized photovoltaic-energy storage systems considering energy storage flexibility

Author

Listed:
  • Xu, Ximeng
  • Ma, Chao
  • Gou, Haixing
  • Deng, Zexing
  • Tian, Zhuojun

Abstract

Coordinated operation of photovoltaic (PV) and energy storage (ES), which leverages ES flexibility to hedge against the uncertainty of PV, is a promising solution to facilitate the penetration and consumption of solar energy. In this paper, we focus on the emerging oversized PV-ES hybrid generation systems (HGSs) and propose the corresponding optimal declaring model. The generic model integrates scenario-oriented uncertainty modelling of PV output, operation strategy of PV-ES HGSs, and a bi-objective optimization model considering generation and penalty. Taking a PV-ES power station located in Northeast China as the case study, detailed comparisons between different weathers, ES capacities, and Direct Current to Alternating Current ratios are carried out. The results show that: (1) The proposed operation strategy can be effectively applied to oversized PV power plants, which maximizes the consistency of actual operation results with the declared plan. (2) The optimal declaring model yields a range of solutions with different objective preferences, providing operators with a flexible and controllable decision space. (3) Diverse comparisons reveal the operation characteristics of PV-ES HGSs, including the existence condition of competition between objectives, and the impact of the objectives on operation. Thus, this work provides effective guidance for the design, operation, and joint forecast of oversized PV-ES HGSs.

Suggested Citation

  • Xu, Ximeng & Ma, Chao & Gou, Haixing & Deng, Zexing & Tian, Zhuojun, 2025. "Controllable joint forecast of oversized photovoltaic-energy storage systems considering energy storage flexibility," Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225007807
    DOI: 10.1016/j.energy.2025.135138
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225007807
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Chao & Xu, Ximeng & Pang, Xiulan & Li, Xiaofeng & Zhang, Pengfei & Liu, Lu, 2024. "Scenario-based ultra-short-term rolling optimal operation of a photovoltaic-energy storage system under forecast uncertainty," Applied Energy, Elsevier, vol. 356(C).
    2. Tang, Chenghui & Wang, Yishen & Xu, Jian & Sun, Yuanzhang & Zhang, Baosen, 2018. "Efficient scenario generation of multiple renewable power plants considering spatial and temporal correlations," Applied Energy, Elsevier, vol. 221(C), pages 348-357.
    3. Ma, Chao & Liu, Lu, 2022. "Optimal capacity configuration of hydro-wind-PV hybrid system and its coordinative operation rules considering the UHV transmission and reservoir operation requirements," Renewable Energy, Elsevier, vol. 198(C), pages 637-653.
    4. Ma, Chao & Deng, Zexing & Xu, Ximeng & Pang, Xiulan & Li, Xiaofeng & Wu, Runze & Tian, Zhuojun, 2024. "Space optimization of utility-scale photovoltaic power plants considering the impact of inter-row shading," Applied Energy, Elsevier, vol. 370(C).
    5. Wang, Zhenni & Wen, Xin & Tan, Qiaofeng & Fang, Guohua & Lei, Xiaohui & Wang, Hao & Yan, Jinyue, 2021. "Potential assessment of large-scale hydro-photovoltaic-wind hybrid systems on a global scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    6. Kaewnukultorn, Thunchanok & Sepúlveda-Mora, Sergio B. & Hegedus, Steven, 2024. "The impacts of DC/AC ratio, battery dispatch, and degradation on financial evaluation of bifacial PV+BESS systems," Renewable Energy, Elsevier, vol. 236(C).
    7. Huang, Kangdi & Liu, Pan & Ming, Bo & Kim, Jong-Suk & Gong, Yu, 2021. "Economic operation of a wind-solar-hydro complementary system considering risks of output shortage, power curtailment and spilled water," Applied Energy, Elsevier, vol. 290(C).
    8. Lappalainen, Kari & Valkealahti, Seppo, 2022. "Sizing of energy storage systems for ramp rate control of photovoltaic strings," Renewable Energy, Elsevier, vol. 196(C), pages 1366-1375.
    9. Yang, Xiuyuan & Xu, Minglu & Xu, Shouchen & Han, Xiaojuan, 2017. "Day-ahead forecasting of photovoltaic output power with similar cloud space fusion based on incomplete historical data mining," Applied Energy, Elsevier, vol. 206(C), pages 683-696.
    10. Nakamoto, Yuya & Eguchi, Shogo, 2024. "How do seasonal and technical factors affect generation efficiency of photovoltaic power plants?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    11. Gandhi, Oktoviano & Zhang, Wenjie & Kumar, Dhivya Sampath & Rodríguez-Gallegos, Carlos D. & Yagli, Gokhan Mert & Yang, Dazhi & Reindl, Thomas & Srinivasan, Dipti, 2024. "The value of solar forecasts and the cost of their errors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    12. Li, Peiquan & Zhao, Ziwen & Li, Jianling & Liu, Zhengguang & Liu, Yong & Mahmud, Md Apel & Sun, Yong & Chen, Diyi, 2023. "Unlocking potential contribution of seasonal pumped storage to ensure the flexibility of power systems with high proportion of renewable energy sources," Renewable Energy, Elsevier, vol. 218(C).
    13. Yijing Wang & Rong Wang & Katsumasa Tanaka & Philippe Ciais & Josep Penuelas & Yves Balkanski & Jordi Sardans & Didier Hauglustaine & Wang Liu & Xiaofan Xing & Jiarong Li & Siqing Xu & Yuankang Xiong , 2023. "Accelerating the energy transition towards photovoltaic and wind in China," Nature, Nature, vol. 619(7971), pages 761-767, July.
    14. Pinson, P. & Girard, R., 2012. "Evaluating the quality of scenarios of short-term wind power generation," Applied Energy, Elsevier, vol. 96(C), pages 12-20.
    15. Schleifer, Anna H. & Murphy, Caitlin A. & Cole, Wesley J. & Denholm, Paul, 2022. "Exploring the design space of PV-plus-battery system configurations under evolving grid conditions," Applied Energy, Elsevier, vol. 308(C).
    16. He, Yi & Guo, Su & Zhou, Jianxu & Song, Guotao & Kurban, Aynur & Wang, Haowei, 2022. "The multi-stage framework for optimal sizing and operation of hybrid electrical-thermal energy storage system," Energy, Elsevier, vol. 245(C).
    17. Gong, Yu & Liu, Pan & Liu, Yini & Huang, Kangdi, 2021. "Robust operation interval of a large-scale hydro-photovoltaic power system to cope with emergencies," Applied Energy, Elsevier, vol. 290(C).
    18. Zhang, Yusheng & Zhao, Xuehua & Wang, Xin & Li, Aiyun & Wu, Xinhao, 2023. "Multi-objective optimization design of a grid-connected hybrid hydro-photovoltaic system considering power transmission capacity," Energy, Elsevier, vol. 284(C).
    19. Jianxiao Wang & Liudong Chen & Zhenfei Tan & Ershun Du & Nian Liu & Jing Ma & Mingyang Sun & Canbing Li & Jie Song & Xi Lu & Chin-Woo Tan & Guannan He, 2023. "Inherent spatiotemporal uncertainty of renewable power in China," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Chao & Xu, Ximeng & Pang, Xiulan & Li, Xiaofeng & Zhang, Pengfei & Liu, Lu, 2024. "Scenario-based ultra-short-term rolling optimal operation of a photovoltaic-energy storage system under forecast uncertainty," Applied Energy, Elsevier, vol. 356(C).
    2. Cheng, Qian & Liu, Pan & Xia, Qian & Cheng, Lei & Ming, Bo & Zhang, Wei & Xu, Weifeng & Zheng, Yalian & Han, Dongyang & Xia, Jun, 2023. "An analytical method to evaluate curtailment of hydro–photovoltaic hybrid energy systems and its implication under climate change," Energy, Elsevier, vol. 278(C).
    3. Huo, Zhishuo & Zhang, Juntao & Cheng, Chuntian & Cao, Hui & Yang, Yuqi, 2025. "A synergistic model framework for identifying variable renewable energy integration capacity and deployment sites for hydro-wind-PV integrated energy bases," Energy, Elsevier, vol. 314(C).
    4. Jiang, Jianhua & Ming, Bo & Huang, Qiang & Guo, Yi & Shang, Jia’nan & Jurasz, Jakub & Liu, Pan, 2023. "A holistic techno-economic evaluation framework for sizing renewable power plant in a hydro-based hybrid generation system," Applied Energy, Elsevier, vol. 348(C).
    5. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Co-optimization for day-ahead scheduling and flexibility response mode of a hydro–wind–solar hybrid system considering forecast uncertainty of variable renewable energy," Energy, Elsevier, vol. 311(C).
    6. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    7. Zhang, Yusheng & Ma, Chao & Yang, Yang & Pang, Xiulan & Lian, Jijian & Wang, Xin, 2022. "Capacity configuration and economic evaluation of a power system integrating hydropower, solar, and wind," Energy, Elsevier, vol. 259(C).
    8. Cheng, Qian & Liu, Pan & Ming, Bo & Yang, Zhikai & Cheng, Lei & Liu, Zheyuan & Huang, Kangdi & Xu, Weifeng & Gong, Lanqiang, 2024. "Synchronizing short-, mid-, and long-term operations of hydro-wind-photovoltaic complementary systems," Energy, Elsevier, vol. 305(C).
    9. Li, Jinghua & Zhou, Jiasheng & Chen, Bo, 2020. "Review of wind power scenario generation methods for optimal operation of renewable energy systems," Applied Energy, Elsevier, vol. 280(C).
    10. Yue, Tingyi & Li, Chengjiang & Hu, Yu-jie & Wang, Honglei, 2025. "Dispatch optimization study of hybrid pumped storage-wind-photovoltaic system considering seasonal factors," Renewable Energy, Elsevier, vol. 238(C).
    11. Zhiming Zhong & Neng Fan & Lei Wu, 2024. "Multistage robust optimization for the day-ahead scheduling of hybrid thermal-hydro-wind-solar systems," Journal of Global Optimization, Springer, vol. 88(4), pages 999-1034, April.
    12. Gong, Yu & Liu, Pan & Ming, Bo & Li, Dingfang, 2021. "Identifying the effect of forecast uncertainties on hybrid power system operation: A case study of Longyangxia hydro–photovoltaic plant in China," Renewable Energy, Elsevier, vol. 178(C), pages 1303-1321.
    13. Zhang, Yusheng & Zhao, Xuehua & Wang, Xin & Li, Aiyun & Wu, Xinhao, 2023. "Multi-objective optimization design of a grid-connected hybrid hydro-photovoltaic system considering power transmission capacity," Energy, Elsevier, vol. 284(C).
    14. Cheng, Wenjie & Zhao, Zhipeng & Cheng, Chuntian & Yu, Zhihui & Gao, Ying, 2024. "Optimizing peak shaving operation in hydro-dominated hybrid power systems with limited distributional information on renewable energy uncertainty," Renewable Energy, Elsevier, vol. 237(PC).
    15. Wu, Xinyu & Wu, Yiyang & Cheng, Xilong & Cheng, Chuntian & Li, Zehong & Wu, Yongqi, 2023. "A mixed-integer linear programming model for hydro unit commitment considering operation constraint priorities," Renewable Energy, Elsevier, vol. 204(C), pages 507-520.
    16. Chapaloglou, Spyridon & Varagnolo, Damiano & Marra, Francesco & Tedeschi, Elisabetta, 2022. "Data-driven energy management of isolated power systems under rapidly varying operating conditions," Applied Energy, Elsevier, vol. 314(C).
    17. Wang, Yanling & Wen, Xin & Su, Huaying & Qin, Jisen & Kong, Linghui, 2023. "Real-time dispatch of hydro-photovoltaic (PV) hybrid system based on dynamic load reserve capacity," Energy, Elsevier, vol. 285(C).
    18. Gong, Yu & Liu, Tingxi & Liu, Pan & Duan, Limin, 2024. "Deriving joint operating rule curves for hydro–hydrogen–wind–photovoltaic hybrid power systems," Applied Energy, Elsevier, vol. 375(C).
    19. Markos A. Kousounadis-Knousen & Ioannis K. Bazionis & Athina P. Georgilaki & Francky Catthoor & Pavlos S. Georgilakis, 2023. "A Review of Solar Power Scenario Generation Methods with Focus on Weather Classifications, Temporal Horizons, and Deep Generative Models," Energies, MDPI, vol. 16(15), pages 1-29, July.
    20. Zhang, Juntao & Cheng, Chuntian & Yu, Shen & Shen, Jianjian & Wu, Xinyu & Su, Huaying, 2022. "Preliminary feasibility analysis for remaking the function of cascade hydropower stations to enhance hydropower flexibility: A case study in China," Energy, Elsevier, vol. 260(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225007807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.