The effect of the number of tubes on the charging and discharging performances of a novel bio-nPCM within a vertical multi-tube TES system
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2025.135010
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Kazaz, Oguzhan & Karimi, Nader & Paul, Manosh C., 2024. "Optically functional bio-based phase change material nanocapsules for highly efficient conversion of sunlight to heat and thermal storage," Energy, Elsevier, vol. 305(C).
- Joybari, Mahmood Mastani & Seddegh, Saeid & Wang, Xiaolin & Haghighat, Fariborz, 2019. "Experimental investigation of multiple tube heat transfer enhancement in a vertical cylindrical latent heat thermal energy storage system," Renewable Energy, Elsevier, vol. 140(C), pages 234-244.
- Chen, Yuxin & Sun, Yongjun & Yang, Jinling & Tan, Jiaqi & Liu, Yang & Gao, Dian-ce, 2024. "Demand response with PCM-based pipe-embedded wall in commercial buildings: Combined passive and active energy storage in envelopes," Energy, Elsevier, vol. 308(C).
- Esapour, M. & Hosseini, M.J. & Ranjbar, A.A. & Pahamli, Y. & Bahrampoury, R., 2016. "Phase change in multi-tube heat exchangers," Renewable Energy, Elsevier, vol. 85(C), pages 1017-1025.
- Abdollahi, Nasrin & Rahimi, Masoud, 2020. "Potential of water natural circulation coupled with nano-enhanced PCM for PV module cooling," Renewable Energy, Elsevier, vol. 147(P1), pages 302-309.
- Gilago, Mulatu C. & V.P., Chandramohan, 2022. "Performance parameters evaluation and comparison of passive and active indirect type solar dryers supported by phase change material during drying ivy gourd," Energy, Elsevier, vol. 252(C).
- Sharifzadeh, Esmail & Rahimi, Masoud & Azimi, Neda & Abolhasani, Mahdieh, 2024. "Thermal management of photovoltaic panels using phase change materials and hierarchical ZnO/expanded graphite nanofillers," Energy, Elsevier, vol. 306(C).
- Longeon, Martin & Soupart, Adèle & Fourmigué, Jean-François & Bruch, Arnaud & Marty, Philippe, 2013. "Experimental and numerical study of annular PCM storage in the presence of natural convection," Applied Energy, Elsevier, vol. 112(C), pages 175-184.
- Seddegh, Saeid & Wang, Xiaolin & Joybari, Mahmood Mastani & Haghighat, Fariborz, 2017. "Investigation of the effect of geometric and operating parameters on thermal behavior of vertical shell-and-tube latent heat energy storage systems," Energy, Elsevier, vol. 137(C), pages 69-82.
- Dai, Hui & Zhou, Shaobin & Li, Xuefang & Niu, Pingping & He, Suoying & Wang, Wenlong & Gao, Ming, 2024. "Charging and discharging performances investigation for a vertical triplex-tube heat exchanger with a tapered configuration and reverse layout," Renewable Energy, Elsevier, vol. 222(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhanjun Guo & Wu Zhou & Sen Liu & Zhangyang Kang & Rufei Tan, 2023. "Effects of Geometric Parameters and Heat-Transfer Fluid Injection Direction on Enhanced Phase-Change Energy Storage in Vertical Shell-and-Tube System," Sustainability, MDPI, vol. 15(17), pages 1-21, August.
- Choi, Sung Ho & Ko, Han Seo & Sohn, Dong Kee, 2022. "Bubble-driven flow enhancement of heat discharge of latent heat thermal energy storage," Energy, Elsevier, vol. 244(PB).
- Xu, Huaqian & Zuo, Hongyang & Zeng, Kuo & Lu, Yongwen & Chi, Bowen & Flamant, Gilles & Yang, Haiping & Chen, Hanping, 2024. "Investigation of the modified Gaussian-based non-phase field method for numerical simulation of latent heat storage," Energy, Elsevier, vol. 288(C).
- Ma, Y. & Tao, Y. & Shi, L. & Liu, Q.G. & Wang, Y. & Tu, J.Y., 2021. "Investigations on the thermal performance of a novel thermal energy storage unit for poor solar conditions," Renewable Energy, Elsevier, vol. 180(C), pages 166-177.
- Wang, Le-Li & Wang, Liang-Bi & Zhang, Kun & Wang, Ye & Wang, Wei-Wei, 2022. "Prediction of the main characteristics of the shell and tube bundle latent heat thermal energy storage unit using a shell and single-tube unit," Applied Energy, Elsevier, vol. 323(C).
- Janusz T. Cieśliński & Maciej Fabrykiewicz, 2023. "Thermal Energy Storage with PCMs in Shell-and-Tube Units: A Review," Energies, MDPI, vol. 16(2), pages 1-35, January.
- Joybari, Mahmood Mastani & Seddegh, Saeid & Wang, Xiaolin & Haghighat, Fariborz, 2019. "Experimental investigation of multiple tube heat transfer enhancement in a vertical cylindrical latent heat thermal energy storage system," Renewable Energy, Elsevier, vol. 140(C), pages 234-244.
- Ma, Xiaowei & Zhang, Quan & Zou, Sikai, 2022. "An experimental and numerical study on the thermal performance of a loop thermosyphon integrated with latent thermal energy storage for emergency cooling in a data center," Energy, Elsevier, vol. 253(C).
- Anish., R & Joybari, Mahmood Mastani & Seddegh, Saeid & Mariappan, V. & Haghighat, Fariborz & Yuan, Yanping, 2021. "Sensitivity analysis of design parameters for erythritol melting in a horizontal shell and multi-finned tube system: Numerical investigation," Renewable Energy, Elsevier, vol. 163(C), pages 423-436.
- Kalapala, Lokesh & Devanuri, Jaya Krishna, 2020. "Energy and exergy analyses of latent heat storage unit positioned at different orientations – An experimental study," Energy, Elsevier, vol. 194(C).
- Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
- Raud, Ralf & Cholette, Michael E. & Riahi, Soheila & Bruno, Frank & Saman, Wasim & Will, Geoffrey & Steinberg, Theodore A., 2017. "Design optimization method for tube and fin latent heat thermal energy storage systems," Energy, Elsevier, vol. 134(C), pages 585-594.
- Shahsavar, Amin & Al-Rashed, Abdullah A.A.A. & Entezari, Sajad & Sardari, Pouyan Talebizadeh, 2019. "Melting and solidification characteristics of a double-pipe latent heat storage system with sinusoidal wavy channels embedded in a porous medium," Energy, Elsevier, vol. 171(C), pages 751-769.
- Sun, Xiaoqin & Zhang, Quan & Medina, Mario A. & Liao, Shuguang, 2015. "Performance of a free-air cooling system for telecommunications base stations using phase change materials (PCMs): In-situ tests," Applied Energy, Elsevier, vol. 147(C), pages 325-334.
- Sodhi, Gurpreet Singh & Muthukumar, P., 2021. "Compound charging and discharging enhancement in multi-PCM system using non-uniform fin distribution," Renewable Energy, Elsevier, vol. 171(C), pages 299-314.
- He, Junjie & Chu, Wenxiao & Wang, Qiuwang, 2025. "Applications of low melting point alloy for electronic thermal management: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
- Hu, Jianjun & Lan, Shuhan & Hu, Jingheng, 2024. "A self-driven solar air heater integrated with a thermal energy storage unit: Design and experiment study," Energy, Elsevier, vol. 287(C).
- Liang, L. & Diao, Y.H. & Zhao, Y.H. & Wang, Z.Y. & Chen, C.Q., 2021. "Experimental and numerical investigations of latent thermal energy storage using combined flat micro-heat pipe array–metal foam configuration: Simultaneous charging and discharging," Renewable Energy, Elsevier, vol. 171(C), pages 416-430.
- Sohani, Ali & Cornaro, Cristina & Shahverdian, Mohammad Hassan & Hoseinzadeh, Siamak & Moser, David & Nastasi, Benedetto & Sayyaadi, Hoseyn & Astiaso Garcia, Davide, 2023. "Thermography and machine learning combination for comprehensive analysis of transient response of a photovoltaic module to water cooling," Renewable Energy, Elsevier, vol. 210(C), pages 451-461.
- Abdolahimoghadam, Mohammad & Rahimi, Masoud, 2024. "New hybrid nano- and bio-based phase change material containing graphene-copper particles hosting beeswax-coconut oil for solar thermal energy storage: Predictive modeling and evaluation using machine," Energy, Elsevier, vol. 307(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225006528. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.