IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v318y2025ics0360544225005717.html
   My bibliography  Save this article

Pioneering MW bimodal nuclear power cycle for lunar habitats against lunar surface threats: A comprehensive performance study

Author

Listed:
  • Sun, Zijian
  • Zhang, Haochun
  • Sun, QiQi
  • Zhang, Cheng
  • You, Ersheng

Abstract

The complex thermal environment on the lunar surface poses significant challenges for applying nuclear energy in lunar bases. A novel integrity-fortification cycle is proposed to integrate with the conventional thermoelectric closed Brayton cycle to address these environmental threats. A novel nuclear energy system solution is proposed based on the new nuclear energy system, targeting a baseline output power of 1.15 MW, along with its corresponding thermodynamic analysis model. The study analyzes the effects of the working fluid state, cycle pressure ratio, and pressure of the integrity-fortification cycle on the energy system's performance in different modes. The following conclusions were drawn: During the lunar day, the energy system incorporating the supercritical integrity-fortification cycle exhibits excellent robustness under multiple lunar surface environmental threats, with a minimum output power fluctuation of only 1.04 %. The energy system design has an internal optimal choice within a certain range of cycle pressure ratios. During the lunar night, the designed dual-mode energy system effectively utilizes the stable deep space heat sink, resulting in a maximum power output increase of 41.7 % compared to the baseline design.

Suggested Citation

  • Sun, Zijian & Zhang, Haochun & Sun, QiQi & Zhang, Cheng & You, Ersheng, 2025. "Pioneering MW bimodal nuclear power cycle for lunar habitats against lunar surface threats: A comprehensive performance study," Energy, Elsevier, vol. 318(C).
  • Handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225005717
    DOI: 10.1016/j.energy.2025.134929
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225005717
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134929?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Miao, Xinyu & Zhang, Haochun & Ma, Fangwei & Deng, MingHao & You, Ersheng, 2024. "Thermodynamic, exergoeconomic evaluation and optimization of S–N2O/t-N2O nuclear power cycle for the construction of the lunar base," Energy, Elsevier, vol. 302(C).
    2. Lu, Xiaochen & Ma, Rong & Wang, Chao & Yao, Wei, 2016. "Performance analysis of a lunar based solar thermal power system with regolith thermal storage," Energy, Elsevier, vol. 107(C), pages 227-233.
    3. Zhang, Tao & Li, Yiteng & Chen, Yin & Feng, Xiaoyu & Zhu, Xingyu & Chen, Zhangxing & Yao, Jun & Zheng, Yongchun & Cai, Jianchao & Song, Hongqing & Sun, Shuyu, 2021. "Review on space energy," Applied Energy, Elsevier, vol. 292(C).
    4. Li, Xueling & Li, Renfu & Hu, Lin & Zhu, Shengjie & Zhang, Yuanyuan & Cui, Xinguang & Li, Yichao, 2023. "Performance analysis of a dish solar thermal power system with lunar regolith heat storage for continuous energy supply of lunar base," Energy, Elsevier, vol. 263(PE).
    5. Liu, Yiwei & Shen, Tianrun & Lv, Xiaochen & Zhang, Guang & Wang, Chao & Gu, Junping & Zhang, Xian & Wang, Qinggong & Chen, Xiong & Quan, Xiaojun & Yao, Wei, 2023. "Investigation on a lunar energy storage and conversion system based on the in-situ resources utilization," Energy, Elsevier, vol. 268(C).
    6. Cheng, Kunlin & Qin, Jiang & Sun, Hongchuang & Li, Heng & He, Shuai & Zhang, Silong & Bao, Wen, 2019. "Power optimization and comparison between simple recuperated and recompressing supercritical carbon dioxide Closed-Brayton-Cycle with finite cold source on hypersonic vehicles," Energy, Elsevier, vol. 181(C), pages 1189-1201.
    7. Mohapatra, Alok Ku & Sanjay,, 2014. "Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance," Energy, Elsevier, vol. 68(C), pages 191-203.
    8. Singh, Rajinesh & Miller, Sarah A. & Rowlands, Andrew S. & Jacobs, Peter A., 2013. "Dynamic characteristics of a direct-heated supercritical carbon-dioxide Brayton cycle in a solar thermal power plant," Energy, Elsevier, vol. 50(C), pages 194-204.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yuzhuo & Shi, Lingfeng & Yao, Yu & Zhang, Yonghao & He, Jingtao & Tian, Hua & Pei, Gang & Shu, Gequn, 2024. "Supercritical CO2 Brayton cycle for space exploration: New perspectives base on power density analysis," Energy, Elsevier, vol. 313(C).
    2. Zhang, Chong & Shi, Lingfeng & Pei, Gang & Yao, Yu & Li, Kexin & Zhou, Shuo & Shu, Gequn, 2023. "Thermodynamic analysis of combined heating and power system with In-Situ resource utilization for lunar base," Energy, Elsevier, vol. 284(C).
    3. Liu, Zekuan & Wang, Zixuan & Cheng, Kunlin & Wang, Cong & Ha, Chan & Fei, Teng & Qin, Jiang, 2023. "Performance assessment of closed Brayton cycle-organic Rankine cycle lunar base energy system: Thermodynamic analysis, multi-objective optimization," Energy, Elsevier, vol. 278(PA).
    4. Cheng, Kunlin & Li, Jiahui & Liu, Zekuan & Pan, Wente & Qin, Jiang & Jing, Wuxing, 2025. "A novel solar-powered closed-Brayton-cycle and thermoelectric generator integrated energy system with thermal storage for lunar base: Modeling and analysis," Energy, Elsevier, vol. 317(C).
    5. Song, Hongqing & Zhang, Jie & Ni, Dongdong & Sun, Yueqiang & Zheng, Yongchun & Kou, Jue & Zhang, Xianguo & Li, Zhengyi, 2021. "Investigation on in-situ water ice recovery considering energy efficiency at the lunar south pole," Applied Energy, Elsevier, vol. 298(C).
    6. Kim, Sunjin & Kim, Min Soo & Kim, Minsung, 2020. "Parametric study and optimization of closed Brayton power cycle considering the charge amount of working fluid," Energy, Elsevier, vol. 198(C).
    7. Zhang, Tao & Wu, Chuang & Li, Zhankui & Li, Bo, 2024. "Enhanced dynamic modeling of regenerative CO2 transcritical power cycles: Comparative analysis of Pham-corrected and conventional turbine models," Energy, Elsevier, vol. 313(C).
    8. Hu, Dinghua & Li, Mengmeng & Li, Qiang, 2021. "A solar thermal storage power generation system based on lunar in-situ resources utilization: modeling and analysis," Energy, Elsevier, vol. 223(C).
    9. Ma, Ning & Meng, Fugui & Hong, Wenpeng & Li, Haoran & Niu, Xiaojuan, 2023. "Thermodynamic assessment of the dry-cooling supercritical Brayton cycle in a direct-heated solar power tower plant enabled by CO2-propane mixture," Renewable Energy, Elsevier, vol. 203(C), pages 649-663.
    10. Lou, Juwei & Wang, Jiangfeng & Chen, Liangqi & Wang, Yikai & Zhao, Pan & Wang, Shunsen, 2023. "Multi-objective optimization and off-design performance evaluation of coaxial turbomachines for a novel energy storage-based recuperated S–CO2 Brayton cycle driven by nuclear energy," Energy, Elsevier, vol. 275(C).
    11. Li, Xueling & Li, Renfu & Chang, Huawei & Zeng, Lijian & Xi, Zhaojun & Li, Yichao, 2022. "Numerical simulation of a cavity receiver enhanced with transparent aerogel for parabolic dish solar power generation," Energy, Elsevier, vol. 246(C).
    12. Delsoto, G.S. & Battisti, F.G. & da Silva, A.K., 2023. "Dynamic modeling and control of a solar-powered Brayton cycle using supercritical CO2 and optimization of its thermal energy storage," Renewable Energy, Elsevier, vol. 206(C), pages 336-356.
    13. Xiao, Xu & Zhang, Zhuojun & Yu, Wentao & Shang, Wenxu & Ma, Yanyi & Tan, Peng, 2022. "Achieving a high-specific-energy lithium-carbon dioxide battery by implementing a bi-side-diffusion structure," Applied Energy, Elsevier, vol. 328(C).
    14. Sun, Yinong & Frew, Bethany & Dalvi, Sourabh & Dhulipala, Surya C., 2022. "Insights into methodologies and operational details of resource adequacy assessment: A case study with application to a broader flexibility framework," Applied Energy, Elsevier, vol. 328(C).
    15. Xu, Jing & Cheng, Kunlin & Dang, Chaolei & Wang, Yilin & Liu, Zekuan & Qin, Jiang & Liu, Xiaoyong, 2023. "Performance comparison of liquid metal cooling system and regenerative cooling system in supersonic combustion ramjet engines," Energy, Elsevier, vol. 275(C).
    16. Wang, Kun & He, Ya-Ling & Zhu, Han-Hui, 2017. "Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts," Applied Energy, Elsevier, vol. 195(C), pages 819-836.
    17. Cheng, Kunlin & Qin, Jiang & Zhang, Duo & Bao, Wen & Jing, Wuxing, 2022. "Performance evaluation for a combined power generation system of closed-Brayton-cycle and thermoelectric generator with finite cold source at room temperature on hypersonic vehicles," Energy, Elsevier, vol. 254(PC).
    18. Mahdi Deymi-Dashtebayaz & Parisa Kazemiani-Najafabad, 2019. "Energy, Exergy, Economic, and Environmental analysis for various inlet air cooling methods on Shahid Hashemi-Nezhad gas turbines refinery," Energy & Environment, , vol. 30(3), pages 481-498, May.
    19. Ma, Yuegeng & Morosuk, Tatiana & Liu, Ming & Liu, Jiping, 2020. "Development and comparison of control schemes for the off-design operation of a recompression supercritical CO2 cycle with an intercooled main compressor," Energy, Elsevier, vol. 211(C).
    20. Dang, Chaolei & Xu, Jing & Chen, Zhichao & Cheng, Kunlin & Qin, Jiang & Liu, Guodong, 2024. "Comparative study of different layouts in the closed-Brayton-cycle-based segmented cooling thermal management system for scramjets," Energy, Elsevier, vol. 301(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225005717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.