IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v316y2025ics0360544225001367.html
   My bibliography  Save this article

Comparative studies on two types of adiabatic membrane-based absorbers/desorbers in absorption chiller

Author

Listed:
  • Xu, Mengjie
  • Wu, Wei
  • Jin, Qianqian
  • Han, Haibin
  • Liu, Zexiao
  • Zhai, Chong

Abstract

This study compares two types of compact and efficient absorbers and desorbers—plate frame membrane (PFM) and hollow fiber membrane (HFM)—for use in absorption chillers. Experiments were conducted to determine the mass transfer coefficients and fraction factors necessary for accurate modeling. Under identical hydraulic diameters, PFM modules consistently exhibit higher absorption and desorption rates than HFM modules with smaller solution pressure drops. A detailed analysis of the geometric effects on sorption rates and pressure drops reveals that smaller channel widths, channel heights, tube diameters, and higher channel/tube numbers enhance sorption rates but also increase pressure drops. Using MATLAB's optimization toolbox, the optimal geometries for maximizing volumetric cooling capacity were identified: 1175 kW/m³ for the PFM absorber (PFMA), 3510 kW/m³ for the HFM absorber (HFMA), 1994 kW/m³ for the PFM desorber (PFMD), and 4106 kW/m³ for the HFM desorber (HFMD). The absorption and desorption processes along the module length were also compared, showing that 80 % of these processes occur within the first 40 % of the module length and are completed within 80 % of the module. This research provides a comprehensive comparison of two adiabatic membrane-based absorbers and desorbers, facilitating the optimization and development of compact and efficient absorption chillers.

Suggested Citation

  • Xu, Mengjie & Wu, Wei & Jin, Qianqian & Han, Haibin & Liu, Zexiao & Zhai, Chong, 2025. "Comparative studies on two types of adiabatic membrane-based absorbers/desorbers in absorption chiller," Energy, Elsevier, vol. 316(C).
  • Handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225001367
    DOI: 10.1016/j.energy.2025.134494
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225001367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134494?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhai, Chong & Wu, Wei, 2021. "Performance optimization and comparison towards compact and efficient absorption refrigeration system with conventional and emerging absorbers/desorbers," Energy, Elsevier, vol. 229(C).
    2. Rodríguez-Muñoz, J.L. & Belman-Flores, J.M., 2014. "Review of diffusion–absorption refrigeration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 145-153.
    3. Asfand, Faisal & Bourouis, Mahmoud, 2015. "A review of membrane contactors applied in absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 173-191.
    4. Venegas, M. & de Vega, M. & García-Hernando, N. & Ruiz-Rivas, U., 2017. "Adiabatic vs non-adiabatic membrane-based rectangular micro-absorbers for H2O-LiBr absorption chillers," Energy, Elsevier, vol. 134(C), pages 757-766.
    5. Sui, Zengguang & Wu, Wei, 2022. "A comprehensive review of membrane-based absorbers/desorbers towards compact and efficient absorption refrigeration systems," Renewable Energy, Elsevier, vol. 201(P1), pages 563-593.
    6. Zhai, Chong & Wu, Wei, 2023. "Experimental parameter study and correlation development of microchannel membrane-based absorption process for efficient thermal cooling with high compactness," Energy, Elsevier, vol. 279(C).
    7. Sehgal, Shitiz & Alvarado, Jorge L. & Hassan, Ibrahim G. & Kadam, Sambhaji T., 2021. "A comprehensive review of recent developments in falling-film, spray, bubble and microchannel absorbers for absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sui, Zengguang & Wu, Wei, 2022. "A comprehensive review of membrane-based absorbers/desorbers towards compact and efficient absorption refrigeration systems," Renewable Energy, Elsevier, vol. 201(P1), pages 563-593.
    2. Zhai, Chong & Wu, Wei & Coronas, Alberto, 2021. "Membrane-based absorption cooling and heating: Development and perspectives," Renewable Energy, Elsevier, vol. 177(C), pages 663-688.
    3. Sui, Zengguang & Sui, Yunren & Wu, Wei, 2022. "Multi-objective optimization of a microchannel membrane-based absorber with inclined grooves based on CFD and machine learning," Energy, Elsevier, vol. 240(C).
    4. Zhai, Chong & Wu, Wei, 2024. "A compact modular microchannel membrane-based absorption thermal energy storage system for highly efficient solar cooling," Energy, Elsevier, vol. 294(C).
    5. Zhai, Chong & Wu, Wei, 2021. "Performance optimization and comparison towards compact and efficient absorption refrigeration system with conventional and emerging absorbers/desorbers," Energy, Elsevier, vol. 229(C).
    6. Hamza K. Mukhtar & Saud Ghani, 2021. "Hybrid Ejector-Absorption Refrigeration Systems: A Review," Energies, MDPI, vol. 14(20), pages 1-31, October.
    7. Karolina Weremijewicz & Andrzej Gajewski, 2021. "Measurement Uncertainty Estimation for Laser Doppler Anemometer," Energies, MDPI, vol. 14(13), pages 1-11, June.
    8. Zhai, Chong & Wu, Wei, 2022. "Energetic, exergetic, economic, and environmental analysis of microchannel membrane-based absorption refrigeration system driven by various energy sources," Energy, Elsevier, vol. 239(PB).
    9. Sui, Zengguang & Wu, Wei, 2023. "AI-assisted maldistribution minimization of membrane-based heat/mass exchangers for compact absorption cooling," Energy, Elsevier, vol. 263(PC).
    10. Ashouri, Mahyar & Chhokar, Callum & Bahrami, Majid, 2024. "A novel microgroove-based absorber for sorption heat transformation systems: Analytical modeling and experimental investigation," Energy, Elsevier, vol. 307(C).
    11. Zhai, Chong & Wu, Wei, 2023. "Experimental parameter study and correlation development of microchannel membrane-based absorption process for efficient thermal cooling with high compactness," Energy, Elsevier, vol. 279(C).
    12. Amaris, Carlos & Vallès, Manel & Bourouis, Mahmoud, 2018. "Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review," Applied Energy, Elsevier, vol. 231(C), pages 826-853.
    13. You, Jinfang & Gao, Jintong & Li, Renpeng & Wang, Ruzhu & Xu, Zhenyuan, 2025. "Air-source heat pump assisted absorption heat storage for discharging under low ambient temperature," Applied Energy, Elsevier, vol. 380(C).
    14. Wu, Xi & Xu, Shiming & Jiang, Mengnan, 2018. "Development of bubble absorption refrigeration technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3468-3482.
    15. Asfand, Faisal & Stiriba, Youssef & Bourouis, Mahmoud, 2015. "CFD simulation to investigate heat and mass transfer processes in a membrane-based absorber for water-LiBr absorption cooling systems," Energy, Elsevier, vol. 91(C), pages 517-530.
    16. Lee, Jin Ki & Lee, Kyoung-Ryul & Kang, Yong Tae, 2014. "Development of binary nanoemulsion to apply for diffusion absorption refrigerator as a new refrigerant," Energy, Elsevier, vol. 78(C), pages 693-700.
    17. Lee, Gawon & Choi, Hyung Won & Kang, Yong Tae, 2021. "Cycle performance analysis and experimental validation of a novel diffusion absorption refrigeration system using R600a/n-octane," Energy, Elsevier, vol. 217(C).
    18. Yang, Yifan & Cui, Gary & Lan, Christopher Q., 2019. "Developments in evaporative cooling and enhanced evaporative cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    19. María-José Suárez López & Jesús-Ignacio Prieto & Eduardo Blanco & David García, 2020. "Tests of an Absorption Cooling Machine at the Gijón Solar Cooling Laboratory," Energies, MDPI, vol. 13(15), pages 1-13, August.
    20. Lisong Wang & Lijuan He & Yijian He, 2024. "Review on Absorption Refrigeration Technology and Its Potential in Energy-Saving and Carbon Emission Reduction in Natural Gas and Hydrogen Liquefaction," Energies, MDPI, vol. 17(14), pages 1-51, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225001367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.