IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v315y2025ics036054422500074x.html
   My bibliography  Save this article

Experimental and numerical study on the mechanical inconsistency of a dual-opposed free-piston Stirling engine generator

Author

Listed:
  • Sun, Haojie
  • Jin, Qingyue
  • Yu, Guoyao
  • Zhu, Shunmin
  • Luo, Ercang

Abstract

The dual-opposed free-piston Stirling generator (FPSG) presents potential advantages in terms of heightened efficiency, diminished vibrations, and flexible operation. However, the challenge encountered on a dual-opposed configuration posed by components’ inconsistency has hindered its progress, and analyses of this inconsistency are infrequently performed in the literature. In response, this study delves into the inconsistency of mechanical parameters, specifically addressing the moving mass of the displacer and the power piston, along with planar spring stiffness, employing both computational modeling and experimental methodologies. A meticulous comparison between experimental outcomes and computational predictions reveals a commendable agreement, with a maximum deviation within 7.3 % for heat-to-electricity efficiency and electrical power. In instances of mechanical inconsistencies, an acoustic power flow within the expansion space transpires, transferring from the generator with a heavier moving mass on the power piston and the displacer, coupled with a stiffer planar spring, to the generator with a lighter moving mass on the power piston and the displacer, along with a softer plate spring. Furthermore, an escalation in the inconsistency of mechanical parameters corresponds to an increased phase difference between the two pistons and the two displacers. It is noteworthy that planar spring stiffness exhibits particular sensitivity to the movements of the moving components. These findings provide valuable perception into the design, manufacture, and control of dual-opposed FPSGs.

Suggested Citation

  • Sun, Haojie & Jin, Qingyue & Yu, Guoyao & Zhu, Shunmin & Luo, Ercang, 2025. "Experimental and numerical study on the mechanical inconsistency of a dual-opposed free-piston Stirling engine generator," Energy, Elsevier, vol. 315(C).
  • Handle: RePEc:eee:energy:v:315:y:2025:i:c:s036054422500074x
    DOI: 10.1016/j.energy.2025.134432
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422500074X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134432?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Shunmin & Yu, Guoyao & Ma, Ying & Cheng, Yangbin & Wang, Yalei & Yu, Shaofei & Wu, Zhanghua & Dai, Wei & Luo, Ercang, 2019. "A free-piston Stirling generator integrated with a parabolic trough collector for thermal-to-electric conversion of solar energy," Applied Energy, Elsevier, vol. 242(C), pages 1248-1258.
    2. Sun, Haojie & Yu, Guoyao & Dai, Wei & Zhang, Limin & Luo, Ercang, 2022. "Dynamic and thermodynamic characterization of a resonance tube-coupled free-piston Stirling engine-based combined cooling and power system," Applied Energy, Elsevier, vol. 322(C).
    3. Xiao, Lei & Wu, Zhanghua & Zhu, Qilu & Jia, Zilong & Zhao, Dong & Hu, Jianying & Zhu, Shunmin & Luo, Ercang, 2023. "Dynamic response of a dual-opposed free-piston Stirling generator," Energy, Elsevier, vol. 284(C).
    4. Zhu, Shunmin & Yu, Guoyao & Liang, Kun & Dai, Wei & Luo, Ercang, 2021. "A review of Stirling-engine-based combined heat and power technology," Applied Energy, Elsevier, vol. 294(C).
    5. Liu, Yiwei & Shen, Tianrun & Lv, Xiaochen & Zhang, Guang & Wang, Chao & Gu, Junping & Zhang, Xian & Wang, Qinggong & Chen, Xiong & Quan, Xiaojun & Yao, Wei, 2023. "Investigation on a lunar energy storage and conversion system based on the in-situ resources utilization," Energy, Elsevier, vol. 268(C).
    6. Zhu, Shunmin & Yu, Guoyao & O, Jongmin & Xu, Tao & Wu, Zhanghua & Dai, Wei & Luo, Ercang, 2018. "Modeling and experimental investigation of a free-piston Stirling engine-based micro-combined heat and power system," Applied Energy, Elsevier, vol. 226(C), pages 522-533.
    7. Chi, Chunyun & Li, Ruijie & Mou, Jian & Lin, Mingqiang & Jiao, Kexin & Yang, Mingzhuo & Liu, He & Hong, Guotong, 2024. "Theoretical and experimental study of free piston Stirling generator for high cold end temperatures," Energy, Elsevier, vol. 289(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Haojie & Yu, Guoyao & Zhao, Dan & Dai, Wei & Luo, Ercang, 2023. "Thermoacoustic hysteresis of a free-piston Stirling electric generator," Energy, Elsevier, vol. 280(C).
    2. Wang, Haitao & Chen, Yanyan & Luo, Jing & Zhang, Limin & Kang, Huifang & Luo, Ercang & Zhu, Shunmin, 2025. "A novel high-power free-piston stirling engine generator with integrated heat pipes for thermal-to-electric conversion of clean energy," Energy, Elsevier, vol. 314(C).
    3. Carmela Perozziello & Lavinia Grosu & Bianca Maria Vaglieco, 2021. "Free-Piston Stirling Engine Technologies and Models: A Review," Energies, MDPI, vol. 14(21), pages 1-22, October.
    4. Xiao, Lei & Luo, Kaiqi & Chi, Jiaxin & Chen, Geng & Wu, Zhanghua & Luo, Ercang & Xu, Jingyuan, 2023. "Study on a direct-coupling thermoacoustic refrigerator using time-domain acoustic-electrical analogy method," Applied Energy, Elsevier, vol. 339(C).
    5. Zhu, Shunmin & Yu, Guoyao & Liang, Kun & Dai, Wei & Luo, Ercang, 2021. "A review of Stirling-engine-based combined heat and power technology," Applied Energy, Elsevier, vol. 294(C).
    6. Xiao, Lei & Wu, Zhanghua & Zhu, Qilu & Jia, Zilong & Zhao, Dong & Hu, Jianying & Zhu, Shunmin & Luo, Ercang, 2023. "Dynamic response of a dual-opposed free-piston Stirling generator," Energy, Elsevier, vol. 284(C).
    7. Xiao, Lei & Luo, Kaiqi & Hu, Jianying & Jia, Zilong & Chen, Geng & Xu, Jingyuan & Luo, Ercang, 2023. "Transient and steady performance analysis of a free-piston Stirling generator," Energy, Elsevier, vol. 273(C).
    8. Qiu, Hao & Wang, Kai & Yu, Peifeng & Ni, Mingjiang & Xiao, Gang, 2021. "A third-order numerical model and transient characterization of a β-type Stirling engine," Energy, Elsevier, vol. 222(C).
    9. Yu, Minjie & Xu, Lei & Cui, Haichuan & Liu, Zhichun & Liu, Wei, 2024. "Characteristics and potential of a novel inclined-flow stirling regenerator constructed by sinusoidal corrugated channels," Energy, Elsevier, vol. 288(C).
    10. Ji-Qiang Li & Jeong-Tae Kwon & Seon-Jun Jang, 2020. "The Power and Efficiency Analyses of the Cylindrical Cavity Receiver on the Solar Stirling Engine," Energies, MDPI, vol. 13(21), pages 1-17, November.
    11. Pablo Jimenez Zabalaga & Evelyn Cardozo & Luis A. Choque Campero & Joseph Adhemar Araoz Ramos, 2020. "Performance Analysis of a Stirling Engine Hybrid Power System," Energies, MDPI, vol. 13(4), pages 1-38, February.
    12. Hu, Yiwei & Xu, Jingyuan & Zhao, Dan & Yang, Rui & Hu, Jianying & Luo, Ercang, 2024. "Analysis on a single-stage direct-coupled thermoacoustic refrigerator driven by low/medium-grade heat," Applied Energy, Elsevier, vol. 361(C).
    13. Ye, Wenlian & Wang, Xiaojun & Liu, Yingwen, 2020. "Application of artificial neural network for predicting the dynamic performance of a free piston Stirling engine," Energy, Elsevier, vol. 194(C).
    14. Chen, Wen-Lih & Sirisha, Vadlakonda & Yu, Chi-Yuan & Wang, Yan-Ru & Dai, Ming-Wei & Lasek, Janusz & Li, Yueh-Heng, 2024. "Design and optimization of a combined heat and power system with a fluidized-bed combustor and stirling engine," Energy, Elsevier, vol. 293(C).
    15. David García & María-José Suárez & Eduardo Blanco & Jesús-Ignacio Prieto, 2022. "Experimental and Numerical Characterisation of a Non-Tubular Stirling Engine Heater for Biomass Applications," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    16. İncili, Veysel & Karaca Dolgun, Gülşah & Keçebaş, Ali & Ural, Tolga, 2023. "Energy and exergy analyses of a coal-fired micro-CHP system coupled engine as a domestic solution," Energy, Elsevier, vol. 274(C).
    17. Xiao, Wang & Chen, Lei & Yu, Guoyao & Ma, Zhuang & Ma, Ying & Xue, Jianhua & Cheng, Yangbin & Luo, Ercang, 2024. "Design and experimental study of a 300 We class combustion-driven high frequency free-piston Stirling electric generator," Energy, Elsevier, vol. 300(C).
    18. Zhou, Yingcong & Sofianopoulos, Aimilios & Gainey, Brian & Lawler, Benjamin & Mamalis, Sotirios, 2019. "A system-level numerical study of a homogeneous charge compression ignition spring-assisted free piston linear alternator with various piston motion profiles," Applied Energy, Elsevier, vol. 239(C), pages 820-835.
    19. Khanmohammadi, Shoaib & Kizilkan, Onder & Ahmed, Faraedoon Waly, 2020. "Tri-objective optimization of a hybrid solar-assisted power-refrigeration system working with supercritical carbon dioxide," Renewable Energy, Elsevier, vol. 156(C), pages 1348-1360.
    20. Zhang, Chong & Shi, Lingfeng & Pei, Gang & Yao, Yu & Li, Kexin & Zhou, Shuo & Shu, Gequn, 2023. "Thermodynamic analysis of combined heating and power system with In-Situ resource utilization for lunar base," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:315:y:2025:i:c:s036054422500074x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.