IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224037514.html
   My bibliography  Save this article

A comprehensive study of optimizing renewable energy-water-heat integration for isolated islands in Persian Gulf

Author

Listed:
  • Babaei, Reza
  • Ting, David S-K
  • Carriveau, Rupp

Abstract

This study evaluates the technical and economic feasibility of implementing a hybrid renewable energy system (HES) with a reverse osmosis desalination unit to address critical energy and water shortages in the remote islands of Failaka, Larak, and Lavan in the Persian Gulf. The purpose is to provide a sustainable solution for producing fresh water, heat, and electricity in these isolated locations. The analysis identified the optimal system configuration for Failaka Island, achieving the lowest Net Present Cost (NPC) of $1.09 million, a Cost of Energy (COE) of $0.091/kWh, and a Loss of Power Supply Probability (LPSP) of 0.064. This configuration also reached the highest renewable energy fraction at 17.8 %. Additionally, Failaka Island's system produced 20,728 kWh/year of excess electricity, the highest among the islands, and maintained the lowest operating costs at $52,360/year. Environmental analysis showed a significant reduction in carbon footprint, with Failaka using 21.6 % less diesel and 1.4 % less natural gas than Larak Island, and 22.2 % less diesel and 2.1 % less natural gas than Lavan Island. Furthermore, implementing heat recovery reduced CO2 emissions by up to 15.2 % on Lavan Island, enhancing the system's overall sustainability and cost-effectiveness.

Suggested Citation

  • Babaei, Reza & Ting, David S-K & Carriveau, Rupp, 2024. "A comprehensive study of optimizing renewable energy-water-heat integration for isolated islands in Persian Gulf," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224037514
    DOI: 10.1016/j.energy.2024.133973
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224037514
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133973?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghorbani, Narges & Kasaeian, Alibakhsh & Toopshekan, Ashkan & Bahrami, Leyli & Maghami, Amin, 2018. "Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability," Energy, Elsevier, vol. 154(C), pages 581-591.
    2. Olatomiwa, Lanre & Mekhilef, Saad & Huda, A.S.N. & Ohunakin, Olayinka S., 2015. "Economic evaluation of hybrid energy systems for rural electrification in six geo-political zones of Nigeria," Renewable Energy, Elsevier, vol. 83(C), pages 435-446.
    3. Ali Saleh Aziz & Mohammad Faridun Naim Tajuddin & Mohd Rafi Adzman & Makbul A. M. Ramli & Saad Mekhilef, 2019. "Energy Management and Optimization of a PV/Diesel/Battery Hybrid Energy System Using a Combined Dispatch Strategy," Sustainability, MDPI, vol. 11(3), pages 1-26, January.
    4. Akhtari, Mohammad Reza & Shayegh, Iman & Karimi, Nader, 2020. "Techno-economic assessment and optimization of a hybrid renewable earth - air heat exchanger coupled with electric boiler, hydrogen, wind and PV configurations," Renewable Energy, Elsevier, vol. 148(C), pages 839-851.
    5. Furat Dawood & GM Shafiullah & Martin Anda, 2020. "Stand-Alone Microgrid with 100% Renewable Energy: A Case Study with Hybrid Solar PV-Battery-Hydrogen," Sustainability, MDPI, vol. 12(5), pages 1-17, March.
    6. Alghamdi, Ali S., 2024. "Optimizing energy costs and reliability: A multi-objective framework with learning-enhanced manta ray foraging for hybrid PV/battery systems," Energy, Elsevier, vol. 291(C).
    7. Toopshekan, Ashkan & Yousefi, Hossein & Astaraei, Fatemeh Razi, 2020. "Technical, economic, and performance analysis of a hybrid energy system using a novel dispatch strategy," Energy, Elsevier, vol. 213(C).
    8. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Qian & Huang, Xiang & Wang, Feng & Xu, Chao & Babaei, Reza & Ahmadian, Hossein, 2022. "Optimal sizing and feasibility analysis of grid-isolated renewable hybrid microgrids: Effects of energy management controllers," Energy, Elsevier, vol. 240(C).
    2. Toopshekan, Ashkan & Ahmadi, Esmaeil & Abedian, Ali & Vaziri Rad, Mohammad Amin, 2024. "Techno-economic analysis, optimization, and dispatch strategy development for renewable energy systems equipped with Internet of Things technology," Energy, Elsevier, vol. 296(C).
    3. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    4. Mousavi, Seyed Ali & Toopshekan, Ashkan & Mehrpooya, Mehdi & Delpisheh, Mostafa, 2023. "Comprehensive exergetic performance assessment and techno-financial optimization of off-grid hybrid renewable configurations with various dispatch strategies and solar tracking systems," Renewable Energy, Elsevier, vol. 210(C), pages 40-63.
    5. Toopshekan, Ashkan & Abedian, Ali & Azizi, Arian & Ahmadi, Esmaeil & Vaziri Rad, Mohammad Amin, 2023. "Optimization of a CHP system using a forecasting dispatch and teaching-learning-based optimization algorithm," Energy, Elsevier, vol. 285(C).
    6. Ullah, Zia & Elkadeem, M.R. & Kotb, Kotb M. & Taha, Ibrahim B.M. & Wang, Shaorong, 2021. "Multi-criteria decision-making model for optimal planning of on/off grid hybrid solar, wind, hydro, biomass clean electricity supply," Renewable Energy, Elsevier, vol. 179(C), pages 885-910.
    7. Naderipour, Amirreza & Kamyab, Hesam & Klemeš, Jiří Jaromír & Ebrahimi, Reza & Chelliapan, Shreeshivadasan & Nowdeh, Saber Arabi & Abdullah, Aldrin & Hedayati Marzbali, Massoomeh, 2022. "Optimal design of hybrid grid-connected photovoltaic/wind/battery sustainable energy system improving reliability, cost and emission," Energy, Elsevier, vol. 257(C).
    8. Ozturk, Zafer & Terkes, Musa & Demirci, Alpaslan, 2024. "Optimal planning of hybrid power systems under economic variables and different climatic regions: A case study of Türkiye," Renewable Energy, Elsevier, vol. 232(C).
    9. Bhatt, Ankit & Sharma, M.P. & Saini, R.P., 2016. "Feasibility and sensitivity analysis of an off-grid micro hydro–photovoltaic–biomass and biogas–diesel–battery hybrid energy system for a remote area in Uttarakhand state, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 53-69.
    10. Michael O. Ukoba & Ogheneruona E. Diemuodeke & Mohammed Alghassab & Henry I. Njoku & Muhammad Imran & Zafar A. Khan, 2020. "Composite Multi-Criteria Decision Analysis for Optimization of Hybrid Renewable Energy Systems for Geopolitical Zones in Nigeria," Sustainability, MDPI, vol. 12(14), pages 1-27, July.
    11. Ugwoke, B. & Gershon, O. & Becchio, C. & Corgnati, S.P. & Leone, P., 2020. "A review of Nigerian energy access studies: The story told so far," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    12. Zhou, Jianguo & Xu, Zhongtian, 2023. "Optimal sizing design and integrated cost-benefit assessment of stand-alone microgrid system with different energy storage employing chameleon swarm algorithm: A rural case in Northeast China," Renewable Energy, Elsevier, vol. 202(C), pages 1110-1137.
    13. Mohamed Ali Zdiri & Tawfik Guesmi & Badr M. Alshammari & Khalid Alqunun & Abdulaziz Almalaq & Fatma Ben Salem & Hsan Hadj Abdallah & Ahmed Toumi, 2022. "Design and Analysis of Sliding-Mode Artificial Neural Network Control Strategy for Hybrid PV-Battery-Supercapacitor System," Energies, MDPI, vol. 15(11), pages 1-20, June.
    14. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.
    15. Miloud Rezkallah & Sanjeev Singh & Ambrish Chandra & Bhim Singh & Hussein Ibrahim, 2020. "Off-Grid System Configurations for Coordinated Control of Renewable Energy Sources," Energies, MDPI, vol. 13(18), pages 1-25, September.
    16. Giwa, Adewale & Alabi, Adetunji & Yusuf, Ahmed & Olukan, Tuza, 2017. "A comprehensive review on biomass and solar energy for sustainable energy generation in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 620-641.
    17. Pan, Jeng-Shyang & Hu, Pei & Chu, Shu-Chuan, 2021. "Binary fish migration optimization for solving unit commitment," Energy, Elsevier, vol. 226(C).
    18. Davoudkhani, Iraj Faraji & Dejamkhooy, Abdolmajid & Nowdeh, Saber Arabi, 2023. "A novel cloud-based framework for optimal design of stand-alone hybrid renewable energy system considering uncertainty and battery aging," Applied Energy, Elsevier, vol. 344(C).
    19. Rovick Tarife & Yosuke Nakanishi & Yicheng Zhou & Noel Estoperez & Anacita Tahud, 2023. "Integrated GIS and Fuzzy-AHP Framework for Suitability Analysis of Hybrid Renewable Energy Systems: A Case in Southern Philippines," Sustainability, MDPI, vol. 15(3), pages 1-25, January.
    20. Li, Chong & Zhou, Dequn & Wang, Hui & Lu, Yuzheng & Li, Dongdong, 2020. "Techno-economic performance study of stand-alone wind/diesel/battery hybrid system with different battery technologies in the cold region of China," Energy, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224037514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.