IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224035928.html
   My bibliography  Save this article

Exploration on deep pulverized coal activation and ultra-low NOx emission strategies with novel purifying-combustion technology

Author

Listed:
  • Su, Kun
  • Ouyang, Ziqu
  • Li, Shuyun
  • Chen, Qisi
  • Wang, Hongshuai
  • Ding, Hongliang
  • Wang, Wenyu

Abstract

Under the strategic objectives of carbon peaking and carbon neutrality, increasingly stringent NOx emission standard was hard to meet in coal-fired boilers, and it was imperative to develop clean coal combustion technologies. As a novel combustion technology, purifying-combustion technology had good prospects in NOx emission reduction, and pulverized coal modification and modified fuel combustion occurred in purifying burner and down-fired combustor (DFC) respectively with this technology. The novelty of this study was associated with a first-time systematical analysis of the advantage of purifying burner in deep pulverized coal activation and the matching relationship of multistage combustion air in reduction region of DFC. Experiments were performed in 30 kW purifying-combustion test rig to investigate the two-stage modification characteristics of pulverized coal in purifying burner and the difference in influence of reducing intensity on combustion and NOx emission characteristics at different reduction region lengths and the influence of staged air distribution on them in DFC. Two-stage purifying burner demonstrated greater advantages in improving particle properties of pulverized coal compared to single-stage self-preheating burner: specific surface area, pore volume, pore diameter, density of carbon defect structure and fuel-N conversion rate increased from 19.01 m3/g, 29.15 mm3/g, 4.34 nm, 3.93 and 52.96 % to 34.39 m3/g, 42.49 mm3/g, 4.57 nm, 4.41 and 66.43 %, respectively. In DFC, increasing reducing intensity in reduction region or extending its length reduced NOx emission, albeit at the expense of combustion efficiency (η). Decreasing reducing intensity resulted in decrease of η difference and increase of NOx emission difference between different lengths. Staged air distribution in reduction region promoted clean and efficient combustion, and increasing staged air ratio to ∞ realized minimal NOx emission of 39.50 mg/m3 with η of 99.23 %.

Suggested Citation

  • Su, Kun & Ouyang, Ziqu & Li, Shuyun & Chen, Qisi & Wang, Hongshuai & Ding, Hongliang & Wang, Wenyu, 2024. "Exploration on deep pulverized coal activation and ultra-low NOx emission strategies with novel purifying-combustion technology," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035928
    DOI: 10.1016/j.energy.2024.133814
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224035928
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lijuan Zhang & Tatyana Ponomarenko, 2023. "Directions for Sustainable Development of China’s Coal Industry in the Post-Epidemic Era," Sustainability, MDPI, vol. 15(8), pages 1-32, April.
    2. Rahimipetroudi, Iman & Rashid, Kashif & Yang, Je Bok & Dong, Sang Keun, 2021. "Development of environment-friendly dual fuel pulverized coal-natural gas combustion technology for the co-firing power plant boiler: Experimental and numerical analysis," Energy, Elsevier, vol. 228(C).
    3. Wang, Junchao & Fan, Weidong & Li, Yu & Xiao, Meng & Wang, Kang & Ren, Peng, 2012. "The effect of air staged combustion on NOx emissions in dried lignite combustion," Energy, Elsevier, vol. 37(1), pages 725-736.
    4. Lawal, Mohammed S. & Fairweather, Michael & Gogolek, Peter & Ingham, Derek B. & Ma, Lin & Pourkashanian, Mohamed & Williams, Alan, 2013. "CFD predictions of wake-stabilised jet flames in a cross-flow," Energy, Elsevier, vol. 53(C), pages 259-269.
    5. Liu, Mingyu & Chen, Sheng & Zhu, Hongwei & Zhou, Zijian & Xu, Jingying, 2023. "Numerical investigation of ammonia/coal co-combustion in a low NOx swirl burner," Energy, Elsevier, vol. 282(C).
    6. Wang, Jialin & Kuang, Min & Zhao, Xiaojuan & Wu, Haiqian & Ti, Shuguang & Chen, Chuyang & Jiao, Long, 2020. "Trends of the low-NOx and high-burnout combustion characteristics in a cascade-arch, W-shaped flame furnace regarding with the staged-air angle," Energy, Elsevier, vol. 212(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Xiepeng & Yi, Jiwei & Han, Yu & Zhang, Xiaolei & Tang, Fei & Hu, Longhua, 2024. "Facade flame depth coming out from the fire compartment opening subject the external sideward wind," Energy, Elsevier, vol. 304(C).
    2. Zeng, Yijie & Kweon, Joonwoo & Kim, Gyeong-Min & Jeon, Chung-Hwan, 2024. "Carbon-free power generation strategy in South Korea: CFD simulation for ammonia injection strategies through boiler burner configurations in tangentially fired boiler," Energy, Elsevier, vol. 309(C).
    3. Li, Xinzhuo & Choi, Minsung & Jung, Chanho & Park, Yeseul & Choi, Gyungmin, 2022. "Effects of the staging position and air−LPG mixing ratio on the combustion and emission characteristics of coal and gas co-firing," Energy, Elsevier, vol. 254(PB).
    4. Shang, Fengju & Hu, Longhua & Sun, Xiepeng & Wang, Qiang & Palacios, Adriana, 2017. "Flame downwash length evolution of non-premixed gaseous fuel jets in cross-flow: Experiments and a new correlation," Applied Energy, Elsevier, vol. 198(C), pages 99-107.
    5. Ti, Shuguang & Kuang, Min & Wang, Haopeng & Xu, Guangyin & Niu, Cong & Liu, Yannan & Wang, Zhenfeng, 2020. "Experimental combustion characteristics and NOx emissions at 50% of the full load for a 600-MWe utility boiler: Effects of the coal feed rate for various mills," Energy, Elsevier, vol. 196(C).
    6. Liu, Ming & Yan, JunJie & Chong, DaoTong & Liu, JiPing & Wang, JinShi, 2013. "Thermodynamic analysis of pre-drying methods for pre-dried lignite-fired power plant," Energy, Elsevier, vol. 49(C), pages 107-118.
    7. Li, Zixiang & Qiao, Xinqi & Miao, Zhengqing, 2021. "A novel burner arrangement scheme with annularly combined multiple airflows for wall-tangentially fired pulverized coal boiler," Energy, Elsevier, vol. 222(C).
    8. Dios, M. & Souto, J.A. & Casares, J.J., 2013. "Experimental development of CO2, SO2 and NOx emission factors for mixed lignite and subbituminous coal-fired power plant," Energy, Elsevier, vol. 53(C), pages 40-51.
    9. Liu, Guangkui & Chen, Zhichao & Li, Zhengqi & Zong, Qiudong & Zhang, Hao, 2014. "Effect of the arch-supplied over-fire air ratio on gas/solid flow characteristics of a down-fired boiler," Energy, Elsevier, vol. 70(C), pages 95-109.
    10. Xiang Lin & Xin Lei & Chen Wang & Xuehui Jing & Wei Liu & Lijiang Dong & Qiaozhen Wang & Hao Lu, 2024. "Numerical Simulation Study of Hydrogen Blending Combustion in Swirl Pulverized Coal Burner," Energies, MDPI, vol. 17(1), pages 1-17, January.
    11. Hashimoto, Nozomu & Shirai, Hiromi, 2014. "Numerical simulation of sub-bituminous coal and bituminous coal mixed combustion employing tabulated-devolatilization-process model," Energy, Elsevier, vol. 71(C), pages 399-413.
    12. Ti, Shuguang & Chen, Zhichao & Li, Zhengqi & Xie, Yiquan & Shao, Yunlin & Zong, Qiudong & Zhang, Qinghua & Zhang, Hao & Zeng, Lingyan & Zhu, Qunyi, 2014. "Influence of different swirl vane angles of over fire air on flow and combustion characteristics and NOx emissions in a 600 MWe utility boiler," Energy, Elsevier, vol. 74(C), pages 775-787.
    13. Tang, Fei & Hu, Peng & Shi, Congling, 2021. "Ceiling thermal impingement spread characteristics induced by wall-attached fires under various sub-atmospheric pressures," Energy, Elsevier, vol. 215(PB).
    14. Sun, Xiepeng & Zhang, Xiaolei & Lv, Jiang & Chen, Xiaotao & Hu, Longhua, 2023. "Experimental study on the buoyant turbulent diffusion flame height of various intermittent levels," Applied Energy, Elsevier, vol. 351(C).
    15. Lv, You & Liu, Jizhen & Yang, Tingting & Zeng, Deliang, 2013. "A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler," Energy, Elsevier, vol. 55(C), pages 319-329.
    16. Chen, Zhichao & Wang, Zhenwang & Li, Zhengqi & Xie, Yiquan & Ti, Shuguang & Zhu, Qunyi, 2014. "Experimental investigation into pulverized-coal combustion performance and NO formation using sub-stoichiometric ratios," Energy, Elsevier, vol. 73(C), pages 844-855.
    17. Gao, Zihe & Wan, Huaxian & Ji, Jie & Bi, Yubo, 2019. "Experimental prediction on the performance and propagation of ceiling jets under the influence of wall confinement," Energy, Elsevier, vol. 178(C), pages 378-385.
    18. Ouyang, Ziqu & Song, Wenhao & Li, Shiyuan & Liu, Jingzhang & Ding, Hongliang, 2020. "Experiment study on NOx emission characteristics of the ultra-low volatile fuel in a 2 MW novel pulverized fuel self-sustained preheating combustor," Energy, Elsevier, vol. 209(C).
    19. Su, Kun & Ouyang, Ziqu & Wang, Hongshuai & Ding, Hongliang & Zhang, Jinyang & Wang, Wenyu, 2024. "Effects of activated fuel and staged secondary air distributions on purification, combustion and NOx emission characteristics of pulverized coal with purification-combustion technology," Energy, Elsevier, vol. 302(C).
    20. Wu, Xiaofeng & Fan, Weidong & Liu, Yacheng & Bian, Bao, 2019. "Numerical simulation research on the unique thermal deviation in a 1000 MW tower type boiler," Energy, Elsevier, vol. 173(C), pages 1006-1020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.