IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224035692.html
   My bibliography  Save this article

A novel stochastic algorithm-based non-structural model for combined heat and mass exchanger network synthesis

Author

Listed:
  • Liu, Siqi
  • Xiao, Yuan
  • Xu, Yue
  • Cui, Guomin

Abstract

Combined heat and mass exchanger network (CHMEN) synthesis plays a vital role in the chemical industry with a wide spread of applications due to its effectiveness in enhancing energy recovery and reducing emissions. However, in the optimization of CHMEN, obtaining the optimal solution is challenging because the complex heat/mass exchanger matches in addition to the numerous variables in both the mass and heat transfer processes. Therefore, a novel simultaneous optimization method is proposed in this paper to resolve the CHMEN synthesis problem. First, a general node-based non-structural model (G-NNM) is established employing mathematical programming. In this regard, the potential mass or heat exchange units are represented by alternative nodes in the rich/poor or hot/cold streams. This allows for realizing all the possible matches. Specifically, the concept of superposition streams is utilized to design the coupling model of subsystems, linking their interaction by the mass exchange temperature. Additionally, a random walk algorithm with compulsive evolution is introduced to handle complex computations. Then, the optimal solutions are obtained using the accepting inferior solution strategy. Finally, the validity and effectiveness of the proposed simultaneous optimization method are demonstrated in this work. The results show that the proposed method effectively addresses industrial challenges and achieves an optimal total annual cost (TAC) compared to existing methods in the literature. Overall, by taking into account the coupling modes between subsystems, this study provides a feasible scheme to address the issue of other process integration.

Suggested Citation

  • Liu, Siqi & Xiao, Yuan & Xu, Yue & Cui, Guomin, 2024. "A novel stochastic algorithm-based non-structural model for combined heat and mass exchanger network synthesis," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035692
    DOI: 10.1016/j.energy.2024.133791
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224035692
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133791?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kayange, Heri Ambonisye & Cui, Guomin & Xu, Yue & Li, Jian & Xiao, Yuan, 2020. "Non-structural model for heat exchanger network synthesis allowing for stream splitting," Energy, Elsevier, vol. 201(C).
    2. Dong, Ruifeng & Yu, Yunsong & Zhang, Zaoxiao, 2014. "Simultaneous optimization of integrated heat, mass and pressure exchange network using exergoeconomic method," Applied Energy, Elsevier, vol. 136(C), pages 1098-1109.
    3. Gadalla, Mamdouh A., 2015. "A new graphical method for Pinch Analysis applications: Heat exchanger network retrofit and energy integration," Energy, Elsevier, vol. 81(C), pages 159-174.
    4. Kovač Kralj, Anita, 2010. "Optimization of an industrial retrofitted heat exchanger network, using a stage-wise model," Energy, Elsevier, vol. 35(12), pages 4748-4753.
    5. Wang, Yufei & Wei, Ying & Feng, Xiao & Chu, Khim Hoong, 2014. "Synthesis of heat exchanger networks featuring batch streams," Applied Energy, Elsevier, vol. 114(C), pages 30-44.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Bohong & Klemeš, Jiří Jaromír & Li, Nianqi & Zeng, Min & Varbanov, Petar Sabev & Liang, Yongtu, 2021. "Heat exchanger network retrofit with heat exchanger and material type selection: A review and a novel method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Xinxin Liu & Nan Li & Feng Liu & Hailin Mu & Longxi Li & Xiaoyu Liu, 2021. "Optimal Design on Fossil-to-Renewable Energy Transition of Regional Integrated Energy Systems under CO 2 Emission Abatement Control: A Case Study in Dalian, China," Energies, MDPI, vol. 14(10), pages 1-25, May.
    3. Wang, Jingyi & Wang, Zhe & Zhou, Ding & Sun, Kaiyu, 2019. "Key issues and novel optimization approaches of industrial waste heat recovery in district heating systems," Energy, Elsevier, vol. 188(C).
    4. Pan, Ming & Bulatov, Igor & Smith, Robin, 2016. "Improving heat recovery in retrofitting heat exchanger networks with heat transfer intensification, pressure drop constraint and fouling mitigation," Applied Energy, Elsevier, vol. 161(C), pages 611-626.
    5. Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Xu, Xiandong & Yu, Xiaodan, 2016. "Optimal day-ahead scheduling of integrated urban energy systems," Applied Energy, Elsevier, vol. 180(C), pages 1-13.
    6. Wang, Yufei & Zhan, Shihui & Feng, Xiao, 2015. "Optimization of velocity for energy saving and mitigating fouling in a crude oil preheat train with fixed network structure," Energy, Elsevier, vol. 93(P2), pages 1478-1488.
    7. Chang, Chenglin & Chen, Xiaolu & Wang, Yufei & Feng, Xiao, 2017. "Simultaneous optimization of multi-plant heat integration using intermediate fluid circles," Energy, Elsevier, vol. 121(C), pages 306-317.
    8. Chin, Hon Huin & Wang, Bohong & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Zeng, Min & Wang, Qiu-Wang, 2020. "Long-term investment and maintenance planning for heat exchanger network retrofit," Applied Energy, Elsevier, vol. 279(C).
    9. Cui, Chengtian & Li, Xingang & Sui, Hong & Sun, Jinsheng, 2017. "Optimization of coal-based methanol distillation scheme using process superstructure method to maximize energy efficiency," Energy, Elsevier, vol. 119(C), pages 110-120.
    10. Bakar, Suraya Hanim Abu & Hamid, Mohd. Kamaruddin Abd. & Alwi, Sharifah Rafidah Wan & Manan, Zainuddin Abdul, 2016. "Selection of minimum temperature difference (ΔTmin) for heat exchanger network synthesis based on trade-off plot," Applied Energy, Elsevier, vol. 162(C), pages 1259-1271.
    11. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    12. Pavão, Leandro V. & Santos, Lucas F. & Oliveira, Cássia M. & Cruz, Antonio J.G. & Ravagnani, Mauro A.S.S. & Costa, Caliane B.B., 2023. "Flexible heat integration system in first-/second-generation ethanol production via screening pinch-based method and multiperiod model," Energy, Elsevier, vol. 271(C).
    13. Pavão, L.V. & Costa, C.B.B. & Ravagnani, M.A.S.S. & Jiménez, L., 2017. "Costs and environmental impacts multi-objective heat exchanger networks synthesis using a meta-heuristic approach," Applied Energy, Elsevier, vol. 203(C), pages 304-320.
    14. Sadeghian Jahromi, Farid & Beheshti, Masoud, 2017. "An extended energy saving method for modification of MTP process heat exchanger network," Energy, Elsevier, vol. 140(P1), pages 1059-1073.
    15. Shokati, Naser & Ranjbar, Faramarz & Yari, Mortaza, 2015. "Exergoeconomic analysis and optimization of basic, dual-pressure and dual-fluid ORCs and Kalina geothermal power plants: A comparative study," Renewable Energy, Elsevier, vol. 83(C), pages 527-542.
    16. Lei, Yunkai & Hou, Kai & Wang, Yue & Jia, Hongjie & Zhang, Pei & Mu, Yunfei & Jin, Xiaolong & Sui, Bingyan, 2018. "A new reliability assessment approach for integrated energy systems: Using hierarchical decoupling optimization framework and impact-increment based state enumeration method," Applied Energy, Elsevier, vol. 210(C), pages 1237-1250.
    17. Zhang, B.J. & Li, J. & Zhang, Z.L. & Wang, K. & Chen, Q.L., 2016. "Simultaneous design of heat exchanger network for heat integration using hot direct discharges/feeds between process plants," Energy, Elsevier, vol. 109(C), pages 400-411.
    18. Lai, Yee Qing & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul, 2020. "Graphical customisation of process and utility changes for heat exchanger network retrofit using individual stream temperature versus enthalpy plot," Energy, Elsevier, vol. 203(C).
    19. Kamel, Dina A. & Gadalla, Mamdouh A. & Abdelaziz, Omar Y. & Labib, Mennat A. & Ashour, Fatma H., 2017. "Temperature driving force (TDF) curves for heat exchanger network retrofit – A case study and implications," Energy, Elsevier, vol. 123(C), pages 283-295.
    20. Aboelazayem, Omar & Gadalla, Mamdouh & Saha, Basudeb, 2018. "Design and simulation of an integrated process for biodiesel production from waste cooking oil using supercritical methanolysis," Energy, Elsevier, vol. 161(C), pages 299-307.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.