IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics036054422403487x.html
   My bibliography  Save this article

Applicability assessment of equivalent circuit-thermal coupling models on LiFePO4 batteries operated under wide-temperature and high-rate pulse discharge conditions

Author

Listed:
  • Zhou, Chen
  • Zhou, Xing
  • Wang, Yu
  • Xiao, Yukang
  • Liu, Yajie

Abstract

In military scenario, high-power lithium iron phosphate (LFP) batteries are frequently used under wide-temperature and high-rate pulse discharge conditions. An accurate electro-thermal coupling model (ETCM) is crucial for the safe operations. Equivalent circuit-thermal coupling model (ECTCM), which combines equivalent circuit model (ECM) and lumped thermal model, is the most widely used type of ETCM in applications. However, the applicability of ECTCM under wide-temperature and high-rate pulse discharge conditions is not clear. To assess the applicability of ECTCM under these special conditions, this study establishes six typical ECTCMs and accurately identify their corresponding model parameters. Then, these models are tested under high-rate pulse discharge conditions from −40 °C to 50 °C. The results indicate that ECTCMs are effective for pulse discharge at ambient and high temperatures, but not suitable for low-temperature conditions below 0 °C. When the temperature is below 0 °C, the pulse discharge voltage of the batteries can not be accurately simulated by ECTCMs. This work provides guidance for electro-thermal coupling modeling under high-rate pulse discharge conditions, and also points out the direction for the development of high-precision ETCM capable of handling wide-temperature and high-rate pulse discharge in the future.

Suggested Citation

  • Zhou, Chen & Zhou, Xing & Wang, Yu & Xiao, Yukang & Liu, Yajie, 2024. "Applicability assessment of equivalent circuit-thermal coupling models on LiFePO4 batteries operated under wide-temperature and high-rate pulse discharge conditions," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s036054422403487x
    DOI: 10.1016/j.energy.2024.133709
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422403487X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133709?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eddahech, Akram & Briat, Olivier & Vinassa, Jean-Michel, 2013. "Thermal characterization of a high-power lithium-ion battery: Potentiometric and calorimetric measurement of entropy changes," Energy, Elsevier, vol. 61(C), pages 432-439.
    2. Wu, Hongfei & Zhang, Xingjuan & Cao, Renfeng & Yang, Chunxin, 2021. "An investigation on electrical and thermal characteristics of cylindrical lithium-ion batteries at low temperatures," Energy, Elsevier, vol. 225(C).
    3. Hou, Jiayang & Xu, Jun & Lin, Chuanping & Jiang, Delong & Mei, Xuesong, 2024. "State of charge estimation for lithium-ion batteries based on battery model and data-driven fusion method," Energy, Elsevier, vol. 290(C).
    4. Zhang, Cheng & Allafi, Walid & Dinh, Quang & Ascencio, Pedro & Marco, James, 2018. "Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique," Energy, Elsevier, vol. 142(C), pages 678-688.
    5. Qiao, Dongdong & Wang, Xueyuan & Lai, Xin & Zheng, Yuejiu & Wei, Xuezhe & Dai, Haifeng, 2022. "Online quantitative diagnosis of internal short circuit for lithium-ion batteries using incremental capacity method," Energy, Elsevier, vol. 243(C).
    6. Zhu, Jiangong & Knapp, Michael & Darma, Mariyam Susana Dewi & Fang, Qiaohua & Wang, Xueyuan & Dai, Haifeng & Wei, Xuezhe & Ehrenberg, Helmut, 2019. "An improved electro-thermal battery model complemented by current dependent parameters for vehicular low temperature application," Applied Energy, Elsevier, vol. 248(C), pages 149-161.
    7. Perez Estevez, Manuel Antonio & Calligaro, Sandro & Bottesi, Omar & Caligiuri, Carlo & Renzi, Massimiliano, 2021. "An electro-thermal model and its electrical parameters estimation procedure in a lithium-ion battery cell," Energy, Elsevier, vol. 234(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mina Naguib & Aashit Rathore & Nathan Emery & Shiva Ghasemi & Ryan Ahmed, 2023. "Robust Electro-Thermal Modeling of Lithium-Ion Batteries for Electrified Vehicles Applications," Energies, MDPI, vol. 16(16), pages 1-20, August.
    2. Theodoros Kalogiannis & Md Sazzad Hosen & Mohsen Akbarzadeh Sokkeh & Shovon Goutam & Joris Jaguemont & Lu Jin & Geng Qiao & Maitane Berecibar & Joeri Van Mierlo, 2019. "Comparative Study on Parameter Identification Methods for Dual-Polarization Lithium-Ion Equivalent Circuit Model," Energies, MDPI, vol. 12(21), pages 1-35, October.
    3. Morali, Ugur, 2022. "A numerical and statistical implementation of a thermal model for a lithium-ion battery," Energy, Elsevier, vol. 240(C).
    4. Fahmy, Hend M. & Alqahtani, Ayedh H. & Hasanien, Hany M., 2024. "Precise modeling of lithium-ion battery in industrial applications using Walrus optimization algorithm," Energy, Elsevier, vol. 294(C).
    5. Zhu, Rui & Duan, Bin & Zhang, Junming & Zhang, Qi & Zhang, Chenghui, 2020. "Co-estimation of model parameters and state-of-charge for lithium-ion batteries with recursive restricted total least squares and unscented Kalman filter," Applied Energy, Elsevier, vol. 277(C).
    6. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    7. Liu, Jiahao & Fan, Yining & Wang, Jinhui & Tao, Changfa & Chen, Mingyi, 2022. "A model-scale experimental and theoretical study on a mineral oil-immersed battery cooling system," Renewable Energy, Elsevier, vol. 201(P1), pages 712-723.
    8. Li, Xiaopeng & Zhao, Minghang & Zhong, Shisheng & Li, Junfu & Fu, Song & Yan, Zhiqi, 2024. "BMSFormer: An efficient deep learning model for online state-of-health estimation of lithium-ion batteries under high-frequency early SOC data with strong correlated single health indicator," Energy, Elsevier, vol. 313(C).
    9. Shovon Goutam & Jean-Marc Timmermans & Noshin Omar & Peter Van den Bossche & Joeri Van Mierlo, 2015. "Comparative Study of Surface Temperature Behavior of Commercial Li-Ion Pouch Cells of Different Chemistries and Capacities by Infrared Thermography," Energies, MDPI, vol. 8(8), pages 1-18, August.
    10. Wei, Gang & Huang, Ranjun & Zhang, Guangxu & Jiang, Bo & Zhu, Jiangong & Guo, Yangyang & Han, Guangshuai & Wei, Xuezhe & Dai, Haifeng, 2023. "A comprehensive insight into the thermal runaway issues in the view of lithium-ion battery intrinsic safety performance and venting gas explosion hazards," Applied Energy, Elsevier, vol. 349(C).
    11. Hou, Liubin & Dong, Ao & Ma, Ruifei & Lin, Hejie & Deng, Yelin, 2024. "The sensitive detection of the early-stage internal short circuit triggered by lithium plating through the simplified electrochemical model at various working conditions," Energy, Elsevier, vol. 304(C).
    12. Son, Donghee & Song, Youngbin & Park, Shina & Oh, Junseok & Kim, Sang Woo, 2025. "Online state-of-charge and capacity co-estimation for lithium-ion batteries under aging and varying temperatures," Energy, Elsevier, vol. 316(C).
    13. Guo, Feng & Hu, Guangdi & Xiang, Shun & Zhou, Pengkai & Hong, Ru & Xiong, Neng, 2019. "A multi-scale parameter adaptive method for state of charge and parameter estimation of lithium-ion batteries using dual Kalman filters," Energy, Elsevier, vol. 178(C), pages 79-88.
    14. Gao, Renjing & Liang, Hong & Zhang, Yunfei & Zhao, Haihe & Chen, Zeyu, 2024. "Characterization of lithium-ion batteries after suffering micro short circuit induced by mechanical stress abuse," Applied Energy, Elsevier, vol. 374(C).
    15. Liang Zhang & Shunli Wang & Daniel-Ioan Stroe & Chuanyun Zou & Carlos Fernandez & Chunmei Yu, 2020. "An Accurate Time Constant Parameter Determination Method for the Varying Condition Equivalent Circuit Model of Lithium Batteries," Energies, MDPI, vol. 13(8), pages 1-12, April.
    16. Giuliano Rancilio & Alexandre Lucas & Evangelos Kotsakis & Gianluca Fulli & Marco Merlo & Maurizio Delfanti & Marcelo Masera, 2019. "Modeling a Large-Scale Battery Energy Storage System for Power Grid Application Analysis," Energies, MDPI, vol. 12(17), pages 1-26, August.
    17. Meng, Jinhao & Cai, Lei & Stroe, Daniel-Ioan & Luo, Guangzhao & Sui, Xin & Teodorescu, Remus, 2019. "Lithium-ion battery state-of-health estimation in electric vehicle using optimized partial charging voltage profiles," Energy, Elsevier, vol. 185(C), pages 1054-1062.
    18. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
    19. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    20. Qiao, Dongdong & Wei, Xuezhe & Fan, Wenjun & Jiang, Bo & Lai, Xin & Zheng, Yuejiu & Tang, Xiaolin & Dai, Haifeng, 2022. "Toward safe carbon–neutral transportation: Battery internal short circuit diagnosis based on cloud data for electric vehicles," Applied Energy, Elsevier, vol. 317(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s036054422403487x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.