IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224017006.html
   My bibliography  Save this article

Experimental study on the effect of slow reaction process of the latent period on coal spontaneous combustion

Author

Listed:
  • Lu, Bing
  • Zhang, Xun
  • Qiao, Ling
  • Ding, Cong
  • Fan, Nan
  • Huang, Ge

Abstract

Inhibiting coal–oxygen reactions during the heating of coal is an effective means to prevent spontaneous coal combustion. Therefore, it is necessary to investigate the influence of the latent-period slow reaction on the temperature rise of coal oxidation and the microscopic reaction mechanism. Experiments were conducted to simulate the slow oxidation and pyrolysis reactions of coal in the latent period, and characteristic parameters of the spontaneous combustion after the constant-temperature reaction were analyzed. The results showed that the latent period process promotes the oxidation and heat release of coal and reduce the energy barrier of the coal–oxygen reaction. In situ FTIR and EPR experiments were performed to analyze the changes in the active structure. The results indicated that the self-reaction of active groups during pyrolysis at 50 °C and 60 °C is crucial to the oxidation of coal, providing adsorption sites of free radicals centered on a carbon atom for oxygen adsorption. The Pearson correlation analysis showed that the continuous formation and participation of the hydroxyl structure during the oxidation at 70 °C is an important step affecting the coal–oxygen chain reaction, and it is a key group for making the coal–oxygen reaction inert.

Suggested Citation

  • Lu, Bing & Zhang, Xun & Qiao, Ling & Ding, Cong & Fan, Nan & Huang, Ge, 2024. "Experimental study on the effect of slow reaction process of the latent period on coal spontaneous combustion," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224017006
    DOI: 10.1016/j.energy.2024.131927
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224017006
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131927?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224017006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.